Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
@Mai.T.Loan câu a pha cuối hơi tắt đó nhìn khó hiểu lắm
còn câu b kl sai r nha
a,\(P=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(P=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right].\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}\)
\(P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{2}{\sqrt{x}-1}=\dfrac{2}{x+\sqrt{x}+1}\)
Vậy \(P=\dfrac{2}{x+\sqrt{x}+1}\)
b, Ta có \(x+\sqrt{x}+1=\left(x+2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)Suy ra \(\dfrac{2}{x+\sqrt{x}+1}>0\forall x>0,x\ne1\)
hay \(P>0\forall x>0,x\ne1\)(đpcm)
a/ \(Q=\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2-x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(x-2\sqrt{x}+1\right).2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2.2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2}{x+\sqrt{x}+1}\)
b/ Ta có: \(x+\sqrt{x}+1=x+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow Q=\frac{2}{x+\sqrt{x}+1}>0\).
Vậy Q > 0
\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)
Đề bài sai
\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)
\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)
Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)
\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)
\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)
\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)
\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)
1.\(x=7+4\sqrt{3}\)
\(=\left(\sqrt{3}+2\right)^2\)
Thay x=\(\left(2+\sqrt{3}\right)^2\), ta có:
\(A=\frac{3+\sqrt{3}}{4+\sqrt{3}}\)
2. \(B=\frac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(B=\frac{-3}{2-\sqrt{x}}\left(đpcm\right)\)
3. \(\frac{B}{A}=\frac{\frac{-3}{2-\sqrt{x}}}{\frac{\sqrt{x}+1}{\sqrt{x}+2}}=\frac{-3}{2-\sqrt{x}}.\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(\frac{B}{A}< -1\Rightarrow\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< -1\)
\(\Leftrightarrow\frac{3\sqrt{x}+6+x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{x-\sqrt{x}-2}< 0\)
\(\Rightarrow x-\sqrt{x}-2< 0\)(Vì \(x-2\sqrt{x}+4>0\))
\(\Leftrightarrow-1< x< 2\)