K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Cảm ơn bạn k sao :))

15 tháng 4 2020

Mọi người ơi giúp mình với

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

7 tháng 6 2015

x6m+4+x6n+2+1=x6m+4-x4+x6n+2-x2+x4+x2+1

                      =x4.(x6m-1)+x2.(x6n-1)+(x4+x2+1)

Vì x6m-1 chia hết cho x6-1 , x6n-1 chia hết cho x6-1 và 

              x6-1=(x3+1)(x3-1) chia hết cho x2-x+1

              x4+x2+1=(x2+1)2-x2 chia hết cho x2-x+1

 => đpcm

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

9 tháng 11 2017

Ta có: \(n^4-14n^3+71n^2-154n+120\)

        = \(n^4-7n^3-7n^3+12n^2+49n^2+10n^2-84n-70n+120\)

        = \(\left(n^4-7n^3+12n^2\right)-\left(7n^3-49n^2+84n\right)+\left(10n^2-70n+120\right)\)

        = \(n^2\left(n^2-7n+12\right)-7n\left(n^2-7n+12\right)+10\left(n^2-7n+120\right)\)

        =\(\left(n^2-7n+10\right)\left(n^2-7n+12\right)\)

        =\(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)

Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 3.

Trong 4 số tự nhiên liên tiếp luôn có 2 số chẵn nên  \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 8.

Do \(\left(3,8\right)=1\)nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 24.

9 tháng 11 2017

Mk mới học lớp 6 nè

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

Ta phân tích biểu thức đã cho ra nhân tử :

A=n4−4n3−4n2+16nA=n4−4n3−4n2+16n

=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)=[n4−4n3]−[4n2−16n]=n3(n−4)−4n(n−4)

=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)=n(n−4)[n2−4]=n(n−2)(n+2)(n−4)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : A=(2k+2)(2k)(2k+4)(2k−2)A=(2k+2)(2k)(2k+4)(2k−2)

=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)=16k(k−1)(k+1)(k+2)=16(k−1)(k)(k+1)(k+2)

Ta nhận thấy (k−1)(k)(k+1)(k+2)(k−1)(k)(k+1)(k+2)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM