Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a+2)3-(a+6)(a2+12)+64=a3+6a2+12a+8-a3-12a-6a2-72+64=0(đpcm)
\(\left(a+2^3\right)-\left(a+6\right).\left(a^2+12\right)+64=0\)
\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\)
\(\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)
\(\Leftrightarrow a^3+6a^2+11a+64=64\)
\(\Leftrightarrow a^3+6a^2+11a^2=0\)
\(\Leftrightarrow a.\left(a^2+6a+11\right)=0\)
\(\Leftrightarrow a.\left[\left(a^2+2.a.3+9\right)+2\right]=0\)
\(\Leftrightarrow a.\left[\left(a+3\right)^2+2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\\left(a+3\right)^2+2=0\left(\text{Vô lí}\right)\end{matrix}\right.\)
\(\Rightarrow a=0\)
\(\Rightarrow\) Đpcm.
\(\Leftrightarrow\left(a+8\right)-\left(a^3+6a^2+12a+72\right)=-64\Leftrightarrow\left(a^3+6a^2+12a+72\right)-\left(a+8\right)=64\)
\(\Leftrightarrow a^3+6a^2+11a+64=64\Leftrightarrow a^3+6a^2+11a=0\Leftrightarrow a\left(a^2+6a+11\right)=0\)
\(\Leftrightarrow a\left[\left(a^2+2.a.3+9\right)+2\right]=0\Leftrightarrow a\left[\left(a+3\right)^2+2\right]=0\Leftrightarrow\orbr{\begin{cases}a=0\\\left(a+3\right)^2+2=0\left(V\text{ô}l\text{í}\right)\end{cases}\Rightarrow a=0}\)
\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )
\(\Rightarrow n^3-n⋮6\)
n^3 - n
= n( n^2 - 1 )
Xét 2 trường hợp :
1 . n là số chẵn
ð n( n^2 – 1 ) chia hết cho 2
2 . n là số lẽ
=> n^2 – 1 là số chẵn
=> n( n^2 – 1 ) chia hết cho 2
Vậy n^3 – n chia hết cho 2
Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )
Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3
=> n^3 – n chia hết cho 3
Vì n^3 – n cùng chia hết cho cả 3 và 2
=> n^3 – n chia hết cho 6
a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)
\(=2\left(x^2-4x+4\right)+5\)
\(=2\left(x-2\right)^2+5\ge5\forall x\)
Giả sử trước khi làm nhé
\(a)\)\(2x^2-8x+13>0\)
\(\Leftrightarrow\)\(4x^2-16x+26>0\)
\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)
\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng )
Vậy ...
\(b)\)\(-2+2x-x^2< 0\)
\(\Leftrightarrow\)\(x^2-2x+2>0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng )
Vậy ...
Chúc bạn học tốt ~