K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Ba số trên là ba số tự nhiên liên tiếp nên chia hết cho 6 ( Ví dụ : 1.2.3= 6 chia hết cho 6 )

\(\Rightarrow n^3-n⋮6\)

3 tháng 9 2018

n^3 - n 

= n( n^2 - 1 )

Xét 2 trường hợp :

1 . n là số chẵn

ð  n( n^2 – 1 ) chia hết cho 2

2 . n là số lẽ

=>  n^2 – 1 là số chẵn

=>  n( n^2 – 1 ) chia hết cho 2

Vậy n^3 – n chia hết cho 2

Có n^3 – n = n( n^2 – 1 ) = n( n + 1 )( n – 1 )

Vì n , n + 1 và n – 1 là 3 số tự nhiên liên tiếp nên chia hết cho 3

=>  n^3 – n chia hết cho 3

Vì n^3 – n cùng chia hết cho cả 3 và 2

=>  n^3 – n chia hết cho 6

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

24 tháng 7 2017

\(A=\frac{n}{3}+\frac{n^2}{2}+\frac{n^3}{6}=\frac{2n+3n^2+n^3}{6}=\frac{\left(n^3+n^2\right)+\left(2n^2+2n\right)}{6}\)

\(=\frac{n^2\left(n+1\right)+2n\left(n+1\right)}{6}=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)

Vì \(n\left(n+1\right)\left(n+2\right)\) là tích hai số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮\)2 và 3

Mà (2;3) = 1 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

Hay \(\frac{n\left(n+1\right)\left(n+2\right)}{6}\) là số nguyên

Vậy \(A\) luôn có gt là số nguyên 

out game over

a: \(\left(a+2\right)^2-\left(a-2\right)^2\)

\(=a^2+4a+4-a^2+4a-4=8a⋮4\)

b: \(\Leftrightarrow n^3-n^2+3n^2-3n+2⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{2;0;3;-1\right\}\)

16 tháng 8 2017

VT = x^2 + 5x - ( x^2 - x -6)

= x^2 + 5x - x^2 + x +6

= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên

16 tháng 9 2017
Ta có n(n+5)-(n-3)(n+2)=n²+5n-(n²-3n+2n-6) =n²+5n-n²+3n-2n+6 =6n+6 Tổng trên có hai hạng tử mà mỗi hạng tử đều chia hết cho 6 nên tổng chia hết cho 6 Vậy n(n+5)-(n-3)(n+2) luôn luôn chia hết cho 6 với mọi n là số nguyên
18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm