Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2+21+22+23+...+260
A = 2+2+2.2+2.2.2+........+2.2.2............2
Vì tất cả các số của tổng A là 2=> A chia hết cho 2
b) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)
A = 2.14+ 25.14+..........+256.14
A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7
c) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)
A = 2.30+ 26.30+..........+255.30
A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15
A=2+2^2+2^3+...+2^60
=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2(1+2)+2^3(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59) chia hết cho 3
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+...+2^58) chia hết cho 7
A=2+2^2+2^3+...+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=15(2+...+2^57) chia hết cho 15
A=(2+2^2)+...+(2^59+2^60)
=2(1+2)+...+2^59(1+2)
=3(2+2^3+...+2^59)
nên A chia hết cho 3.
A= (2+2^2+2^3)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+...+2^58(1+2+2^2)
=7(2+2^4+..+2^58)
nên A chia hết cho 7
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6...
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)...
=15(2+2^5+...+2^57)
nên A chia hết cho 15
tick di ban
a.Ta có :
abc deg = ab.10000 + cd.100 + eg
= ab.9999 + cd .99 + ab +cd + eg
= (ab.9999 + cd .99) +(ab +cd + eg)
Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11
Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!
a, Chứng minh rằng A chia hết cho 3
A = 2 + 22 + 23 + .....+ 260
A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )
A = 2(1+2 ) + 23(1+2) +,...+ 259(1+2)
A = 2.3 + 23.3 + ....+259.3
A = 3(2+23+....+259 ) \(⋮3\)
=> đpcm
chứng minh ằng A chia hết cho 7
A = 2+22 + 23 + .....+ 260
A = ( 2+22 + 23 ) + (24 + 25 + 26) + .... + (258+259+260)
A = 2(1+2 +22 ) +24 (1+2 +22 ) + .... +258(1+2 +22 )
A = 2.7 +24.7 + ....+258.7
A= 7(2+24 ....+258 )\(⋮7\)
=> đpcm
Chứng minh A chia hết cho 15
A = 2 + 22 + 23 + .....+ 260
A = ( 2 + 22 + 23 +24 ) +....+ (257 + 258 + 259 + 260 )
A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)
A = 2.15 + ....+ 257.15
A = 15.(2+...+257) \(⋮15\)
=> đpcm
b,
chứng minh chia hết cho 13
B= 3 + 33 + 35 + + ..........+ 31991
B = (3+33 + 35 ) + (37 + 39 +311 ) + ......+ (31987 + 31989 + 31991 )
B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )
B = 3.91 + 37.91 + ...+ 31987.91
B = 91(3+37 + ... 31987 )
B = 7.13.(3+37 + ... 31987 ) \(⋮13\)
=> đpcm
chứng minh chia hết cho 41
B = 3+33 + 35 + ...+ 31991
B = (3+33 + 35 + 37 ) + ...(31985 + 31987 + 31989 + 31991 )
B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)
B = 3. 820 + ...+ 31985.820
B = 820(3+...+31985)
B = 20.41 (3+...+31985) \(⋮41\)
=> đpcm
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
Lời giải:
CM $A\vdots 7$:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$
------------------------------
CM $A\vdots 3$:
$A=(2+2^2)+(2^3+2^4)+....+(2^{59}+2^{60})$
$=2(1+2)+2^3(1+2)+....+2^{59}(1+2)$
$=(1+2)(2+2^3+...+2^{59})=3(2+2^3+....+2^{59})\vdots 3$
-----------------------------
CM $A\vdots 15$:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{57}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$
$=15(2+2^5+...+2^{57})\vdots 15$