K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

CM $A\vdots 7$:

$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$

$=(1+2+2^2)(2+2^4+....+2^{58})$

$=7(2+2^4+....+2^{58})\vdots 7$

------------------------------

CM $A\vdots 3$:

$A=(2+2^2)+(2^3+2^4)+....+(2^{59}+2^{60})$

$=2(1+2)+2^3(1+2)+....+2^{59}(1+2)$

$=(1+2)(2+2^3+...+2^{59})=3(2+2^3+....+2^{59})\vdots 3$

-----------------------------

CM $A\vdots 15$:

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{57}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$

$=15(2+2^5+...+2^{57})\vdots 15$

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

27 tháng 11 2015

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15

 

20 tháng 10 2015

A=(2+2^2)+...+(2^59+2^60) 
=2(1+2)+...+2^59(1+2) 
=3(2+2^3+...+2^59) 
nên A chia hết cho 3. 
A= (2+2^2+2^3)+...+(2^58+2^59+2^60) 
=2(1+2+2^2)+...+2^58(1+2+2^2) 
=7(2+2^4+..+2^58) 
nên A chia hết cho 7 
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6... 
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)... 
=15(2+2^5+...+2^57) 
nên A chia hết cho 15

tick di ban

4 tháng 4 2020

a.Ta có :

abc deg = ab.10000 + cd.100 + eg

              = ab.9999 + cd .99 + ab +cd + eg

              = (ab.9999 + cd .99) +(ab +cd + eg)

Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11

4 tháng 4 2020

Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!

10 tháng 12 2020

a, Chứng minh rằng A chia hết cho 3 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2+22 ) + (23 + 24 ) + .....+ (259 + 260 )

A  = 2(1+2 ) + 23(1+2) +,...+  259(1+2)

A = 2.3 + 23.3 +  ....+259.3 

A = 3(2+23+....+259 ) \(⋮3\) 

=> đpcm 

chứng minh ằng A chia hết cho 7 

A = 2+22 + 23 + .....+ 260

A = ( 2+22 + 23 ) + (2+ 25 + 26) + .... + (258+259+260)

A = 2(1+2 +22 ) +2(1+2 +22 ) + .... +258(1+2 +22 )

A = 2.7 +24.7  + ....+258.7 

A= 7(2+24 ....+258 )\(⋮7\)

=> đpcm

Chứng minh A chia hết cho 15 

A = 2 + 22 + 23 + .....+ 260 

A = ( 2 + 22 + 23 +24 ) +....+  (257 + 258 + 259 + 260 ) 

A = 2(1+2+22 + 23 ) + .....+ 257(1+2+22+23)

A = 2.15 + ....+ 257.15

A = 15.(2+...+257\(⋮15\) 

=> đpcm  

b,

chứng minh chia hết cho 13

 B= 3 + 33 + 35 + +  ..........+ 31991 

B = (3+33 + 35 ) + (37  + 39 +311 ) + ......+ (31987 + 31989 + 31991 ) 

B = 3(1+32 +34 ) + 37(1+32 + 34 ) + ....+ 31987(1+32 + 34 )

B = 3.91 + 37.91 + ...+ 31987.91 

B = 91(3+37 + ... 31987 ) 

B = 7.13.(3+37 + ... 31987 )  \(⋮13\) 

=> đpcm 

chứng minh chia hết cho 41 

B = 3+33 + 35 + ...+ 31991

B = (3+33 + 3 + 37 ) + ...(31985 + 31987 + 31989 + 31991  ) 

B = 3(1+32 + 34 + 36 ) + ...+ 31985(1+32 + 34 + 36)

B = 3. 820 + ...+ 31985.820

B = 820(3+...+31985)

B = 20.41 (3+...+31985\(⋮41\) 

=> đpcm

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21