K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Ta có: \(3^{100}+3^{101}=3^{100}\left(1+3\right)\)

                                    \(=3^{100}.4\)

                                     \(=\left(3^{50}.2\right)^2\)là số chính phương

Vậy ...............

8 tháng 5 2016

Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:

+, 3^4k = ...1

+, 3^(4k+1) = ....3

+, 3^(4k+2)=....9

+, 3^(4k+3) = ....7

Một số cphương thì ko có tận cùng là 2,3,7,8

Suy ra ta phân tích A như sau:

A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)

Suy ra c/s tận cùng của A chính là c/s tận cùng của:

1.101+3.101+9.101+7.100=2013

Suy ra A có c/s tận cùng là 3 

Suy ra A ko phải số cphương

14 tháng 7 2015

A=3+32+33+34+...+3100

\(\Rightarrow3A=3^2+3^3+3^5+...+3^{101}\)

\(\Rightarrow3A-A=2A=3^{101}-3\)

\(\Rightarrow A=\left(3^{101}-3\right):2\)

\(\Rightarrow A=\left(3^{4.25}.3^1-3\right):2\)

\(\Rightarrow A=\left[\left(...1\right).3-3\right]:2\)

\(A=\left[\left(...3\right)-3\right]:2\)

\(A=\left(...0\right):2=...5\)cũng có thể là số chính phương chứ ? 

A=3+32+33+34+...+3100

=3+32(1+3+32+...+398)

=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9

=>A không phải số chính phương

=>đpcm

 

14 tháng 7 2015

A=3+32+33+34+...+3100

=3+32(1+3+32+...+398)

=3+9(1+3+32+...+398) chia hết cho 3 nhưng không chia hết cho 9

=>A không phải số chính phương

=>đpcm  

bài này trong tương tự ấy