Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thanh Hà - Toán lớp 7 - Học toán với OnlineMath tham khảo
đồng dư nhé bạn.
Vì a là số nguyên dương nên \(4^a\equiv1\left(mod3\right)\)
\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)
Mà \(4^a+2\equiv0\left(mod2\right)\)
Mặt khác \(\left(2,3\right)=1\)
\(\Rightarrow4^a+2⋮6\)
Khi đó \(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)
Vậy với a,b là các số nguyên dương và a+1;b+2007 chia hết cho 6 thì \(4^a+a+b\)chia hết cho 6
Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )
=> A = 21^5 - 1 chia hết cho 20
=> A = 21^10 - 1 chia hết 400
=> A= 21^10 - 1 chia hết cho 200
a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.
\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6
Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))
b) \(ab.\left(a^2-b^2\right)\)
Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6
Nếu a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...)
\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...) - 1 (2;3;4;5...) = 0
thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.
a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)
\(=a^3b-ab+ab-ab^3\)
\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)
Vì \(a^3-a⋮6\)
và \(b-b^3=-\left(b^3-b\right)⋮6\)
nên \(ab\left(a^2-b^2\right)⋮6\)
Vào câu hỏi này nè
https://olm.vn/hoi-dap/question/146868.html
Cho x+y+z=1 và x3+y3+z3=1
Tính A=x2007+y2007+z2007
5(a+2007)3 + 15 (a+ 2007)2 + 10(a+2007)
=5(a+2007)3 + 5 (a+ 2007)2 + 10(a+ 2007)2 + 10(a+2007) = 5(a+2007)2 [ (a+ 2007) +1] +10(a+2007) [(a+2007) + 1]
=5(a+2007)2 (a+ 2008) +10(a+2007)(a+2008) = 5(a+2007)(a+2008) (a+2007 +2) = 5(a+2007)(a+2008) (a+2009)
nhận xét : tích trên chia hết cho 5
và a+2007; a+2008 ; a+2009 là các số nguyên liên tiếp nên tích của chúng chia hết cho 6
=> 5(a+2007)(a+2008) (a+2009) chia hết cho BCNN(5;6) = 30 => đpcm