K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

a) Ta có:

A = 1 + 2 + 22 + 23 + ... + 2200

=> 2A = 2(1 + 2 + 22 + 23 + ... + 2200)

=> 2A = 2 + 22 + 23 + 24 + ... + 2201

=> 2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)

=> A = 2201 - 1

=> A + 1 = 2201 - 1 + 1

=> A + 1 = 2201

Vậy A + 1 = 2201

b) Ta có:

B = 3 + 32 + 33 + ... + 32005

=> 3B = 3(3 + 32 + 33 + ... + 32005)

=> 3B = 32 + 33 + 34 + ... + 32006

=> 3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + .. + 32005)

=> 2B = 32006 - 3

c) Ta có:

C = 4 + 22 + 23 + ... + 22005 

Đặt M = 22 + 23 + ... + 22005, ta có:

2M = 2(2+ 23 + ... + 22005)

=> 2M = 23 + 24 + ... + 22006

=> 2M - M = (23 + 24 + ... + 22006) - (22 + 23 + ... + 22005)

=> M = 22006 - 22

=> M = 22006 - 4

Thay M = 22006 - 4 vào C, ta có:

C = 4 + (22006 - 4) = 22006

=> 2C = 2 . 22006 = 22007

Vậy 2C là lũy thừa của 2.

5 tháng 9 2015

a) A = 22007-1 => A + 1  = 22007

b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006

c) C = 4 + 22 + 23+...+22005 = 2+ 2+ ...+ 22005 + 4

2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006

30 tháng 9 2015

a) B = 3 + 32 + ... + 32005

3B = 32 + 33 + ... + 32006

3B - B = 32006 - 3 

2B = 32006 - 3

Theo bài ra : 2B + 3 = 32006 - 3 + 3 = 32006

16 tháng 8 2015

3) 2 + 22= 2 + 2.2 = 2 .( 1+2 ) = 2. 3

các phần còn lại tương tụ nhé !

 

15 tháng 7 2018

2.3 nha

28 tháng 7 2020

a) A= 1/2+1/32+...+1/20052

A= 1/2.2 + 1/3.3 +....+1/2005.2005

Vì 1/2.2 < 1/1.2 ; 1/3.3 < 1/6;.....; 1/2005.2005 < 1/2004.2005 nên A= 1/2+1/32+...+1/2005< 1/1.2 + 1/2.3 +....+ 1/2004.2005

=> A < B

Vậy...

28 tháng 7 2020

a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{2005^2}=\frac{1}{2005\cdot2005}< \frac{1}{2004\cdot2005}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=B\)

\(\Rightarrow A< B\)

b) \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}< 1\)

Theo câu a) => \(A< B< 1\)

=> A < 1 ( đpcm ) 

8 tháng 4 2015

Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{2005.2005}\)

<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\)=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}\)

=\(1-\frac{1}{2015}=\frac{2014}{2015}<1\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}<1\)

29 tháng 3 2016

goi day phan so can so sanh la M.

1/2^2<1/1.2

1/3^2<1/2.3

.....

1/2005^2<1/2004.2005

ta co:M<1/1.2+1/2.3+1/3.4+...+1/2004.2005

     =>   M<1-1/2+1/2-1/3+1/3-1/4+...+1/2004-1/2005

     =>   M<1-1/2005

     =>   M<2004/2005<1

     =>   M<1