Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$
$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$
$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$
$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$
$>0+0=0$
$\Rightarrow A>3$
b/
$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$
$=1-\frac{1}{2015}<1$
\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có :
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
1.
a.Để A là phân số thì n - 5 khác 0 => n khác 5
b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}
Ta có bảng sau:
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.
a) Ta thấy: 1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
…………...
1/100^2<1/99.100
=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100
Mà 99/100<1 => 1/22 + 1/32 + 1/42 + ... + 1/1002<1
b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)
=>A>50/150>1/3 (1)
Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)
=>A<1/2 (2)
Từ (1) và (2) =>1/3<A<1/2
c) Ta thấy : 1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)
=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2
A = 1.2 + 2.3 + 3.4 + ... + 98.99
A = 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 98.(98 + 1)
A = 12 + 1 + 22 + 2 + 32 + 3 + ... + 982.98
A = (12 + 22 + 32 + ... + 982) + (1 + 2 + 3 + ... + 98)
A = (12 + 22 + 32 + ... + 982) + 4851 (1)
B = 12 + 22 + 32 + ... + 982 (2)
(1)(2) => A - B = 4851 ⋮ 4851
ta có: B = 12 + 22 + 32 +...+982 = 1.1 +2.2+3.3+...+98.98
=> A-B = (1.2+2.3+3.4+4.5+...+98.99) - (1.1+2.2+3.3+...+98.98)
A-B = (1.2-1.1) + (2.3-2.2) + (3.4-3.3) + (4.5-4.4) + ...+ (98.99-98.98)
A-B = 1.(2-1) + 2.(3-2) +3.(4-3) + 4.(5-4) + ...+ 98.(99-98)
A-B = 1 +2+3+4+...+98
A-B = (1+98).98:2
A -B = 4851 chia hết cho 4851
1/ ta co : 1/2<2/3 ; 3/4<4/5 ; 5/6<6/7 ;.......;99/100<100/101
=> A<B
Vi A<B nen A.A<A.B
2/ Vi A<B ( theo cau a) nen A.A<A.B=1/101
A.B<1/101 MA 1/101<1/100
=> A.B<1/100
A.A<1/10*1/10 . A<1/10
Chứng tỏ rằng :
a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1
b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1
Toán lớp 6
ai tích mình tích lại
a) A= 1/22 +1/32+...+1/20052
A= 1/2.2 + 1/3.3 +....+1/2005.2005
Vì 1/2.2 < 1/1.2 ; 1/3.3 < 1/6;.....; 1/2005.2005 < 1/2004.2005 nên A= 1/22 +1/32+...+1/20052 < 1/1.2 + 1/2.3 +....+ 1/2004.2005
=> A < B
Vậy...
a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{2005^2}=\frac{1}{2005\cdot2005}< \frac{1}{2004\cdot2005}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=B\)
\(\Rightarrow A< B\)
b) \(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2004\cdot2005}=\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}< 1\)
Theo câu a) => \(A< B< 1\)
=> A < 1 ( đpcm )