Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(NL=1.2+2.3+3.4+...+98.99\) \(3NL=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+98.99.100-97.98.99=98.99.100\Leftrightarrow NL=\dfrac{98.99.100}{3}\)\(B=\dfrac{NL}{98.99.100}=\dfrac{98.99.100}{\dfrac{3}{98.99.100}}=\dfrac{1}{3}\)
C=1*2+2*3+3*4+...+98*99
C=2+6+12+...+9702
C=2+9702
C=9704
vay C=9704
D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)
D=(99+198+297+...+9801)-(2+6+12+...+9702)
D=(99+9801)-(2+9702)
D=9900-9704
D=196
vay D=196
ai di qua dong tinh thi nho h cho minh nhe
Chị dùg cách tính tổng đi
1. Tìm dãy cách đều bao nhiêu
2. Từ công thức tính tổng rồi suy ra
A = 1.2 + 2.3 + 3.4 + ... + 98.99
A = 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 98.(98 + 1)
A = 12 + 1 + 22 + 2 + 32 + 3 + ... + 982.98
A = (12 + 22 + 32 + ... + 982) + (1 + 2 + 3 + ... + 98)
A = (12 + 22 + 32 + ... + 982) + 4851 (1)
B = 12 + 22 + 32 + ... + 982 (2)
(1)(2) => A - B = 4851 ⋮ 4851
ta có: B = 12 + 22 + 32 +...+982 = 1.1 +2.2+3.3+...+98.98
=> A-B = (1.2+2.3+3.4+4.5+...+98.99) - (1.1+2.2+3.3+...+98.98)
A-B = (1.2-1.1) + (2.3-2.2) + (3.4-3.3) + (4.5-4.4) + ...+ (98.99-98.98)
A-B = 1.(2-1) + 2.(3-2) +3.(4-3) + 4.(5-4) + ...+ 98.(99-98)
A-B = 1 +2+3+4+...+98
A-B = (1+98).98:2
A -B = 4851 chia hết cho 4851
a/
3A=1.2.3+2.3.3+3.4.3+...+98.99.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=
=98.99.100=> A=98.33.100
b
6B=1.3.6+3.5.6+5.7.6+...+99.101.6=
=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=
=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=
=1.3+99.101.103=> (3+99.101.103):6
c/
9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=
=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=
=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=
=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9
Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k
Số k được tính theo quy luật \(k=\left(n+1\right)xd\)
Trong đó: n: số thừa số của 1 số hạng
d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng
Chúc em học tốt
A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}.\)\(\dfrac{24}{25}\)...\(\dfrac{9800}{9801}\)
A = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\)...\(\dfrac{98.100}{99.99}\)
A = \(\dfrac{1}{2}.\dfrac{100}{99}\)
A = \(\dfrac{50}{99}\)
B = \(\dfrac{1.2+2.3+3.4+...+98.99}{98.99.100}\)
Đặt tử số là C Thì
C = 1.2 + 2.3 + 3.4 +...+ 98.99
C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ...+ 98.99.3)
C = \(\dfrac{1}{3}\).[1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 98.99.(100-97)]
C = \(\dfrac{1}{3}\).[1.2.3 -1.2.3+2.3.4- 2.3.4 + 2.4.5 - .... - 97.98.99 + 98.99.100]
C = \(\dfrac{1}{3}\).98.99.100
B = \(\dfrac{\dfrac{1}{3}.98.99.100}{98.99.100}\)
B = \(\dfrac{1}{3}\) = \(\dfrac{33}{99}\) < \(\dfrac{50}{99}\) = A
Vậy B < A
Đặt s = 1.2+2.3+...+98.99
Suy ra 3s=1.2.(3-0)+2.3.(4-1)+...+98.99.(100-97)
=1.2.3-0.1.2+2.3.4-1.2.3+...+98.99.100-97.98.99
=98.99.100
Nên s=98.99.100:3
Đặt A =1.2 + 2.3 + 3.4 + ... + 98.99
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 98.99.(100 - 97)
3A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 98.99.100
3A = 98.99.100
=> A = 98.99.100 : 3 (đcmp)