K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

25 tháng 6 2018

Ta sẽ chứng minh  : 11n+1 + 122n-1 (1) với mọi n \(\inℕ^∗\)bằng phương pháp quy nạp 

Với n = 1 , ta có : 11n+1 + 122n-1 = 112 + 12 = 133 

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k \(\inℕ^∗\), ta sẽ Chứng minh nó cũng đúng khi n = k + 1 

Ta có : 

11(k+1) + 1 + 122(k+1) - 1 = 11.(11k+1 + 122k-1) + 122k-1.(122 - 11) 

                                  = 11 . (11k+1 + 122k-1) + 133 . 122k -1 (2) 

Mà 11k+1 + 122k-1 \(⋮\)133 nên từ (2) ta suy ra được : 11(k+1)+1 + 122(k+1) - 1 \(⋮\)133 

Hay (1) đúng với n = k + 1 

Từ các chứng minh trên => (1) đúng với mọi n \(\inℕ^∗\)

25 tháng 6 2018

\(11^{n+1}+12^{2n-1}=11^n\cdot11+12\cdot12^{2n-2}=11^n\cdot11+12\cdot144^{n-1}\)

\(11^n\cdot11+\left(133-121\right)\cdot144^{n-1}=133\cdot144^{n-1}-121\cdot144^{n-1}+11^n\cdot11\)

\(=133\cdot144^{n-1}-144^{n-1}\cdot121+11^{n-1}\cdot121\)

\(=133\cdot144^{n-1}-121\left(144^{n-1}-11^{n-1}\right)\)

\(=133\cdot144^{n-1}-121\left(144-11\right)\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\cdot144^{n-1}-121\cdot133\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\)

\(=133\left(144^{n-1}-121\left(144^{n-2}+144^{n-3}\cdot11+144^{n-4}\cdot11^2+...+11^{n-2}\right)\right)⋮133\)

\(\Rightarrow11^{n+1}+12^{2n-1}⋮133\)(đpcm)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:
Áp dụng định lý Fermat nhỏ:

Với $a$ là số tự nhiên sao cho $(a,11)=1$ thì:

$a^{10}\equiv 1\pmod {11}\Rightarrow a^{3330}\equiv 1\pmod {11}$

$\Rightarrow a^{3331}\equiv a\pmod {11}$

Còn với mọi $a\vdots 11$ thì $a^{3331}\equiv a\pmod {11}$ (hiển nhiên)

Do đó:

$1^{3331}+2^{3331}+...+2020^{3331}\equiv 1+2+3+...+2020\equiv 1010.2021\equiv 9.8\equiv 6\pmod {11}$

$\Rightarrow 1^{3331}+2^{3331}+...+2020^{3331}-6\equiv 0\pmod {11}$

Ta có đpcm.

19 tháng 4 2017

Tách ra