K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

Với n=1 (tính tay ra) đúng 
Với n=2 (tính tay ra) đúng 
Với n=3 (tính tay ra) đúng. 
Giả sử phương trình trên đúng với n=k, nếu nó cũng đúng với n=k+1 thì phương trình đúng. 
1.1! + 2.2!+...+k*k!=(k+1)!-1 (theo giả thiết trên). 
Phải chứng minh:1.1! + 2.2!+...+k*k! + (k+1)*(k+1)!=(k+1+1)!-1 
<=> (k+1)!-1+(k+1)*(k+1)!=(k+2)!-1 
<=> (k+1)! + (k+1)*(k+1)!=(k+2)! 
<=>(k+1)!*(1+k+1)=(k+2)! 
<=>(k+2)!=(k+2)! Điều này luôn đúng. 
Vậy đẳng thức đã được chứng minh.

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

AH
Akai Haruma
Giáo viên
5 tháng 7 2018

Lời giải:
Đặt biểu thức đã cho là $A$

Ta viết lại biểu thức thành:

\(A=(3^{n+1}-2^{n+1})(3^{n+1}+2^{n+1}).3^{2(n+1)}+(2^{n+1}.3^{n+1})^2\)

Đặt \(3^{n+1}=a; 2^{n+1}=b\Rightarrow A=(a-b)(a+b)a^{2}+(ba)^2\)

\(=(a^2-b^2)a^2+a^2b^2=a^4=(a^2)^2\)

Do đó biểu thức đã cho là một số chính phương.

Ta có đpcm.

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

19 tháng 12 2017

\(\frac{1}{2^2}\)\(+\)\(\frac{1}{4^2}\)\(+\)\(\frac{1}{6^2}\)\(+\)..... \(+\)\(\frac{1}{\left(2n\right)^2}\)

\(\frac{1}{4}\)\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)< \)\(\frac{1}{4}\)\(\left(1+\frac{1}{1.2} +\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)

=   \(\frac{1}{4}\)\(\left(1+1-\frac{1}{n}\right)< \frac{1}{2}\)

2 tháng 1 2016

Đặt S = \(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}\)

\(S<\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Tính VP ra là được 

20 tháng 6 2018

\(\left(m+1\right)\left(n+1\right)\left(p+1\right)=mnp+\left(m+n+p\right)+\left(mn+np+pm\right)+1\)

Dùng BĐT Cauchy cho từng ngoặc ta có điều phải cm do mnp=1.

30 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a = b

30 tháng 3 2021

úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé

2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab

= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )

Sử dụng kết quả ở bài trước ta có đpcm

Đẳng thức xảy ra <=> a=b=1/2