K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath

6 tháng 11 2015

ông cũng chơi bang bang ak tích tui nha

7 tháng 1 2018

Ta có : 

\(A_{\left(n\right)}.B_{\left(n\right)}=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)-2^{n+1}\right]\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-\left(2^{n+1}\right)^2\)

\(=\left(2^{2n+1}\right)^2+2.2^{2n+1}+1-\left(2^{n+1}\right)^2\)

\(=2^{4n+2}+2^{2n+2}+1-2^{2n+2}\)

\(=4^{2n+1}+1\) luôn chia hết cho 5\(\forall n\in N\)

Do đó \(A_{\left(n\right)}.B_{\left(n\right)}\) chia hết cho 5 hay tồn tại 1 và duy nhất \(A_{\left(n\right)}\) hoặc \(B_{\left(n\right)}\) chia hết cho 5

2 tháng 7 2019

#)Giải :

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm