Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng các phân sô sau tối giản với mọi phân số:
\(A,\frac{n+1}{2n+3}\)\(B,\frac{2n+3}{4n+8}\)
a) Vì phân số n+1/2n+3 tối giản với mọi phân số nên ƯCLN(n+1; 2n+3) =1. Gọi ƯCLN(n+1; 2n+3) = d
=> n+1 \(⋮\)d
2n+3 \(⋮\)d
=> 2(n+1) \(⋮\)d
2n+ 3 \(⋮\)d
=> 2n+2 \(⋮\)d
2n+3 \(⋮\)d
=> 2n+3 - 2n -2 \(⋮\)d
=> 1 \(⋮\)d
=> d =1
Vì d= 1 nên phân số n+1/2n+3 là phân số tối giản
Phần b cũng thế nha
Gọi ƯCLN(n + 1 ; 2n + 3) = d
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)
=> \(1⋮d\Rightarrow d=1\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
b Gọi ƯCLN(2n + 3 ; 4n + 8) = d
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d}\)
=> \(2⋮d\Rightarrow d\inƯ\left(2\right)\Rightarrow d\in\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ với mọi n nguyên
=> 2n + 3 không chia hết cho 2
=> \(d\ne2\)=> d = 1
Khi d = 1 , 2n + 3 ; 4n + 8 là 2 số nguyên tố cùng nhau
=> B là phân số tối giản
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
a) Gọi d là ƯCLN (n+1;2n+5)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+5\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow d\in\left\{1;3\right\}\)
Mà 2n+2 ko chia hết cho 3
=>d=1
Vậy......
b)Gọi d là ƯCLN(2n+3;2n+8)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 ko chia hết cho 2
\(\Rightarrow d=1\)
Vậy.......