K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2021

\(\text{Giải: }\)

\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)

\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)

\(\text{Vậy ..................................}\)

có j thắc mắc thì ib cho  mk nhé

24 tháng 3 2021

Đặt ƯCLN  \(3n+2;5n+3=d\)( d \(\inℕ^∗\))

Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1) 

\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)

Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

2 tháng 3 2019

Cm nó là hai sô nguyên tố cùng nhau

2 tháng 3 2019

Giải

gọi d=ƯCLN(3n+2;5n+3) (d thuộc N*)f 5n+3

suy ra 3n+2 chia hết cho d và 5n+3 chia hết cho d

ta có 5.(3n+2) chia hết cho d và 3.(5n +3) chia hết cho d

15n+10 chia hết cho d;15n+9 chia hết cho d

suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d .Vậy d=1

Vì d=1 nên 3n+2/5n+3 là ps tối giản

Vậy......

chúc bạn học tốt!!!!

4 tháng 7 2016

Gọi ƯCLN(3n+2;5n+3)=d

=>3n+2 chia hết cho d và 5n+3 chia hết cho d

=>(3n+2)-(5n+3) chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>1 chia hết cho d

=>d=1

Vì ƯCLN(3n+2;5n+3)=1 nên phân số \(\frac{3n+2}{5n+3}\) tối giản

4 tháng 7 2016

Gọi d là ƯC của 3n + 2 và 5n + 3

Khi đó 3n + 2 chia hết cho d và 5n + 3 chia hết cho d

<=>5.(3n + 2) chia hết cho d và 3.(5n + 3) chia hết cho d 

<=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d

=>(15n + 10) - (15n + 9) = 1  => 1 chia hết cho d=>d = 1

Vậy mọi phân số có dạng  \(\frac{3n+2}{5n+3}\) tối giản

4 tháng 3 2016

Ta có :

   3n + 2 / 5n + 3

= 3 + 2 / 5 + 3

= 5/8

5/8 là phân số tối giản nên 3n + 2 / 5n + 3

Gọi d là ƯCLN(5n+2;3n+1)

Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d

=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d

=>15n+6\(⋮\)d;15n+5\(⋮\)d

=>[(15n+6)-(15n+5)]\(⋮\)d

=>[15n+6-15n-5]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)

 
10 tháng 2 2018

Gọi d là Ư(4n+1;6n+1)            (1)

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}\)

\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)

\(\Rightarrow24n+6-24n-4⋮d\)

\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)

\(\Rightarrow0+2⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\)             (2)

(1)(2) \(\Rightarrow\)\(ƯC\left(4n+1;6n+1\right)=\left\{-1;-2;1;2\right\}\) 

                  mà \(4n⋮2;1⋮̸2\) \(\Rightarrow4n+1⋮̸2\)

\(\RightarrowƯC\left(4n+1;6n+1\right)=\left\{-1;1\right\}\)

vậy phân số \(\frac{4n+1}{6n+1}\) là p/s tối giản với mọi n thuộc N*

5 tháng 3 2018

\(\frac{4n+1}{6n+1}=\frac{2.(2n+\frac{1}{2})}{3.\left(2n+\frac{1}{2}\right)}=\frac{2}{3}\) nhớ k cho mình nha