Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n3 - 13n
= n3 - n - 12n
= n(n2 - 1) - 12n
= n(n - 1)(n + 1) - 12n
n(n - 1)(n + 1) chia hết cho 6 (tích của 3 số nguyên liên tiếp)
- 12n chia hết cho 6
Vậy n3 - 13n chia hết cho 6 (đpcm)
Ta có :
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)
Với mọi số nguyên n ta có :
+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )
+) \(12n⋮6\)
\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)
\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)
Do n nguyên và n > 1 nên \(n\ge2\)
Với n = 2 \(n^3-13n=-18⋮6\)
Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)
Ta chứng minh điều có đúng với n = k + 1
Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)
\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)
Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)
\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)
Tới đây xét tính chẵn lẻ nữa là xong=)
n3 -13n = n3 - n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n
Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6
a)Ta có :
\(n^3-13n\) = \(n^3-12n-n\)\(=n\left(n^2-1\right)-12n\)\(=n.\left(n-1\right)\left(n+1\right)-6.2n\)
* n ; n-1 và n+1 là 3 số nguyên liên tiếp nên n.(n-1)(n+1) chia hết cho 6 vs 6.2n cũng chia hết cho 6
\(\Rightarrow\) n\(^3\)-13n chia hết cho 6
b)Ta có :A=n\(^5\)−5n\(^3\)+4\(n\)=n(n\(^4\)−5n\(^2\)+4)=n[n\(^2\)(n\(^2\)−1)−4(n\(^2\)−1)]=n(n\(^2\)−1)(n\(^2\)−4)=(n−2)(n−1)n(n+1)(n+2)
Vì (n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 5 (1)
(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 3 số nguyên liên tiếp nên chia hết cho 3 (2)
(n−2)(n−1)n(n+1)(n+2)(n−2)(n−1)n(n+1)(n+2) chứa tích của 2 số chẵn liên tiếp nên chia hết cho 8 (3)
Mà (3;5;8) =1 (4)
Từ (1) , (2) , (3) , (4) => A⋮(3.5.8)
=> A⋮120
c) Ta có: n^3+3.n^2-n-3=n^2.(n+3) -(n+3)=(n+3).(n-1).(n+1).
-Do n là số lẻ nên đặt n=2k+1.(k thuộc N).
=> n^3+3.n^2-n-3= (2k+4).2k.(2k+2)= 8.k.(k+1).(k+2).
-Do k(k+1) là tích 2 số tự nhiên liên tiếp nên k(k+1) chia hết cho 2 và k(k+1)(k+2) là tích 3 số tự nhiên liên tiếp nên k(k+1)(k+2) chia hết cho 3.
=> 8k(k+1)(k+2) chia hết cho 16 và chia hết cho 3. Mà (16,3)=1.
=> 8k(k+1)(k+2) chia hết cho 16.3.
=> n^3+3.n^2-n-3 chia hết cho 48 với mọi n là số tự nhiên lẻ (đpcm).
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
n^3 - n
n(n^2 - 1)
n(n - 1)(n + 1)
Vì n, (n - 1), (n + 1) là ba số nguyên liên tiếp, trong đó, có 1 số chia hết cho 2, một số chia hết cho 3 nên tích 3 số chia hết cho 6
=> n(n - 1)(n + 1) chia hết cho 6
<=> (n^3 - n) chia hết cho 6
Ta có : n3 - n = n . ( n2 - 1 )
= n . ( n -1 ) . ( n + 1 )
Đây là tích 3 số tự nhiên liên tiếp => nó chia hết cho 2 ; 3
Vậy n3 - n chia hết cho 6
Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì n-1,n và n+1 là 3 số tự nhiên liên tiếp.
=>(n-1).n.(n+1) chia hết cho 3(1)
Lại có: Vì n-1 và n là 2 số tự nhiên liên tiếp.
=>(n-1).n chia hết cho 2.
=>(n-1).n.(n+1) chia hết cho 2(2)
Từ (1) và (2) ta thấy.
(n-1).n.(n+1) chia hết cho 3 và 2.
mà (3,2)=1
=> (n-1).n.(n+1) chia hết cho 6.
Vậy n3-n chia hét cho 6 với mọi số tự nhiên n.
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)
Vì (n-1).n.(n+1) là tích ba số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 => n3-n chia hết cho 2x3=6 với mọi số nguyên n