Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1
Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31
1:
với a, b, c nguyên thỏa a + b + c = 0
ta có:
a^5 + b^5 + c^5 = (a³+b³)(a²+b²) - a³b² - a²b³ - (a+b)^5 << thay c = -(a+b) >>
= (a+b)(a²-ab+b²)(a²+b²) - a²b²(a+b) - (a+b)^5
= (a+b)[a^4 + b^4 + 2a²b² - a³b - ab³ - a²b² - (a²+b²+2ab)²]
= (a+b)(-5a²b² - 5a³b - 5ab³)
= -5ab(a+b)(ab+a²+b²)
= 5abc(a²+b²+ab)
Vậy a^5 + b^5 + c^5 chia hết cho 5abc
- - -
trở lại bài toán đặt a = x-y ; b = y-z ; c = z-x có ngay a+b+c = 0
do đó ad đẳn thức ở trên ta có:
(x-y)^5 + (y-z)^5 + (z-x)^5 chia hết cho 5(x-y)(x-z)(z-x)
2:
cách 1
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7
cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn)
(a-b)^n = a^n+...............+-b^b(n lẻ)
(2222^5555) + (5555^2222)
=(7.317 +3)^5555 + (7.793+4)^2222
=7K+3^5555 +7P+4^2222
=7K+7P +(3^5)^1111 + (4^2)^1111
=7P+7k +(259)U chia hết cho 7
bạn có thể tham khảo 2 cách
2x+4y chia hết cho 5
=>4x+8y chia hết cho 5(nhân 2)
=>4x+3y+5y chia hết cho 5
5y chia hết cho 5 nen .... 4x+3y chia jhet cho 5
3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)