K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

1:

 với a, b, c nguyên thỏa a + b + c = 0 
ta có: 
a^5 + b^5 + c^5 = (a³+b³)(a²+b²) - a³b² - a²b³ - (a+b)^5 << thay c = -(a+b) >> 

= (a+b)(a²-ab+b²)(a²+b²) - a²b²(a+b) - (a+b)^5 

= (a+b)[a^4 + b^4 + 2a²b² - a³b - ab³ - a²b² - (a²+b²+2ab)²] 

= (a+b)(-5a²b² - 5a³b - 5ab³) 

= -5ab(a+b)(ab+a²+b²) 

= 5abc(a²+b²+ab) 

Vậy a^5 + b^5 + c^5 chia hết cho 5abc 
- - - 
trở lại bài toán đặt a = x-y ; b = y-z ; c = z-x có ngay a+b+c = 0 
do đó ad đẳn thức ở trên ta có: 
(x-y)^5 + (y-z)^5 + (z-x)^5 chia hết cho 5(x-y)(x-z)(z-x) 

2:

cách 1 
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222) 
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222) 
=(2222+4).M +(5555-4).N -4^2222(4^3333-1) 
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1) 
==(2222+4).M +(5555-4).N -4^2222(63K) 
ta thấy 2222+4=2226 chia hết 7 
5555-4 =5551 chia hết cho 7 
63 chia hết cho 7 
-=>(2222^5555) + (5555^2222) chia hết cho 7 

cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn) 
(a-b)^n = a^n+...............+-b^b(n lẻ) 
(2222^5555) + (5555^2222) 
=(7.317 +3)^5555 + (7.793+4)^2222 
=7K+3^5555 +7P+4^2222 
=7K+7P +(3^5)^1111 + (4^2)^1111 
=7P+7k +(259)U chia hết cho 7 
bạn có thể tham khảo 2 cách

21 tháng 2 2016

Tìm x: (1/2x-1004)^2008 = (1/2x-1004)^2006 help me

27 tháng 1 2019

không biết làm

23 tháng 11 2016

7777 mũ 7777 chia hết cho 7

24 tháng 11 2016

Xl bn nhưng mk k hỉu lém 

15 tháng 10 2016

Ta có:

\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)

\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)

Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)

Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)

\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)

\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)

hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)

 

17 tháng 7 2018

cách 1
=2222^5555 +4^5555 +5555^2222 -4^2222-(4^5555 -4^2222)
=(2222+4).M +(5555-4).N -(4^3333.4^2222 -4^2222)
=(2222+4).M +(5555-4).N -4^2222(4^3333-1)
==(2222+4).M +(5555-4).N --4^2222 (64^1111-1)
==(2222+4).M +(5555-4).N -4^2222(63K)
ta thấy 2222+4=2226 chia hết 7
5555-4 =5551 chia hết cho 7
63 chia hết cho 7
-=>(2222^5555) + (5555^2222) chia hết cho 7

cách 2 ta có công thức (a+b)^n =a^n +a^(n-1).b...............b^n (n chẳn)
(a-b)^n = a^n+...............+-b^b(n lẻ)
(2222^5555) + (5555^2222)
=(7.317 +3)^5555 + (7.793+4)^2222
=7K+3^5555 +7P+4^2222
=7K+7P +(3^5)^1111 + (4^2)^1111
=7P+7k +(259)U chia hết cho 7
bạn có thể tham khảo 2 cách

7 tháng 4 2018

Giả sử  trong x,y không có số nào chia hết cho 4 thì \(x^2+y^2\) chia 4 chỉ dư 2 mà \(z^2\) chia 4 dư 0 hoặc 1(vô lí) nên trong x,y có 1 số chia hết cho 4\(\Rightarrow xy⋮4\)

Giả sử trong x,y không có số nào chia hết cho 3 thì \(x^2+y^2\) chia 3 chỉ dư 2 mà \(z^2\) chia 3 dư 0 hoặc 1(vô lí) nên trong x,y có 1 số chia hết cho 3\(\Rightarrow xy⋮3\)

Vì UCLN(3,4)=1 nên \(xy⋮12\)

6 tháng 1 2015

Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)

          5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)

=>22225555 =55552222  = (-4)5555 +42222  (mod 7)

Mà 42222  =(-4)2222 => (-4)5555 +42222 = (-4)2222  + 43333 x 42222 

              =(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)

Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)

Nên (-4)5555 +42222 = 0(mod 7)

Từ (1) và (2) =>22225555 +55552222  chia hết cho 7

21 tháng 1 2017

CM:1/2.3/4.5/6.....99/100<1/10