Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}
= R\{0}
Ta có \(x^2-2x+2=\left(x-1\right)^2+1>0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)
\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)
a) 2x2 - 4x + 5
= 2( x2 - 2x + 1 ) + 3
= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )
b) 3x2 + 2x + 1
= 3( x2 + 2/3x + 1/9 ) + 2/3
= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )
c) -x2 + 6x - 10
= -x2 + 6x - 9 - 1
= -( x2 - 6x + 9 ) - 1
= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
d) -x2 + 3x - 3
= -x2 + 3x - 9/4 - 3/4
= -( x2 - 3x + 9/4 ) - 3/4
= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
e) \(\frac{x^2+4x+5}{2}>0\)
Vì 2 > 0
=> x2 + 4x + 5 > 0
=> x2 + 4x + 4 + 1 > 0
=> ( x + 2 )2 + 1 > 0 ( đúng )
=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )
f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)
Vì x2 + 1 ≥ 1 ∀ x
=> -6 + 2x - x2 < 0
=> -x2 + 2x - 1 - 5
= -( x2 - 2x + 1 ) - 5
= -( x - 1 )2 - 5 < 0 ( đúng )
=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )
a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)
\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)
Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)
Hay :\(2x^2-4x+5>0\)
Vậy nên BPT luôn đúng với mọi số thực x
b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)
\(=\left(x+1\right)^2+2x^2\)
Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)
\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)
Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)
Hay \(-x^2+6x-10\le-1\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)
Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)
Hay \(-x^2+3x-3\le0\forall x\inℝ\)
Vậy nên BPT luôn đúng với mọi số thực x
2 câu còn lại bạn nào làm giúp mình nha
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x
2,991; 2,992; 2,993
b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x
4,004; 4,005; 4,006
a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x
2,991; 2,992; 2,993
b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x
4,004; 4,005; 4,006
\(2x^2-4x+5=2x^2-4x+2+3=2\left(x-1\right)^2+3>0\)
ta có điều phải chứng minh