K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Ta có:

\(-2x^2+4x-10=-2\left(x^2-2x+1\right)-8=-\left(x-1\right)^2-8\le-8< 0\forall x\)

Vậy bất phương trình \(-2x^2+4x-10< 0\) có nghiệm là mọi số thực

22 tháng 4 2017

a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}

= R\{0}

25 tháng 1 2020

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)

14 tháng 8 2020

a) 2x2 - 4x + 5

= 2( x2 - 2x + 1 ) + 3

= 2( x - 1 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 3x2 + 2x + 1

= 3( x2 + 2/3x + 1/9 ) + 2/3

= 3( x + 1/3 )2 + 2/3 ≥ 2/3 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 10

= -x2 + 6x - 9 - 1

= -( x2 - 6x + 9 ) - 1

= -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

d) -x2 + 3x - 3

= -x2 + 3x - 9/4 - 3/4

= -( x2 - 3x + 9/4 ) - 3/4

= -( x - 3/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

e) \(\frac{x^2+4x+5}{2}>0\)

Vì 2 > 0

=> x2 + 4x + 5 > 0

=> x2 + 4x + 4  + 1 > 0

=> ( x + 2 )2 + 1 > 0 ( đúng )

=> \(\frac{x^2+4x+5}{2}>0\)∀ x ( đpcm )

f) \(\frac{-6+2x-x^2}{x^2+1}< 0\)

Vì x2 + 1 ≥ 1 ∀ x

=> -6 + 2x - x2 < 0

=> -x2 + 2x - 1 - 5

= -( x2 - 2x + 1 ) - 5

= -( x - 1 )2 - 5 < 0 ( đúng )

=> \(\frac{-6+2x-x^2}{x^2+1}< 0\)∀ x ( đpcm )

14 tháng 8 2020

a,Ta có :\(2x^2-4x+5=\left(x^2-2x+1\right)+\left(x^2-2x+1\right)+3\)

\(=\left(x-1\right)^2+\left(x-1\right)^2+3=2\left(x-1\right)^2+3\)

Do \(2\left(x-1\right)^2\ge0\Leftrightarrow2\left(x-1\right)^2+3\ge3\forall x\inℝ\)

Hay :\(2x^2-4x+5>0\)

Vậy nên BPT luôn đúng với mọi số thực x 

b,Ta có : \(3x^2+2x+1=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

Do \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\inℝ\\2x^2\ge0\forall x\inℝ\end{cases}}\Leftrightarrow\left(x+1\right)^2+2x^2\ge0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

c,Ta có : \(-x^2+6x-10=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Do \(\left(x-3\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-3\right)^2-1\le-1\forall x\inℝ\)

Hay \(-x^2+6x-10\le-1\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

d, Ta có :\(-x^2+3x-3=-\left(x^2-3x+3\right)\)

\(=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{3}{4}=-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\)

Do \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\inℝ\Leftrightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\forall x\inℝ\)

Hay \(-x^2+3x-3\le0\forall x\inℝ\)

Vậy nên BPT luôn đúng với mọi số thực x

2 câu còn lại bạn nào làm giúp mình nha

21 tháng 4 2018

\(x^2-x+1=x^2-\frac{1}{2}\cdot2x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

25 tháng 3 2018

Ta có:     \(x^2+2x+5\)

       \(=x^2+2x+1+4\)

       \(=\left(x+1\right)^2+4\)\(>0\)      \(\forall x\)

\(\Rightarrow\)\(x^2+2x+5>0\)  \(\forall x\)

hay BĐT luôn có nghiệm với mọi x

P/S: trình bày sai chỗ nào m.n góp ý mk nhé

a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x

2,991; 2,992; 2,993

b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x

4,004; 4,005; 4,006

23 tháng 3 2023

a: Vì 2,99<3 nên 2,99 là nghiệm của bất phương trình 3>x

2,991; 2,992; 2,993

b: Vì 4,01>4 nên 4,01 là nghiệm của bất phương trình 4<x

4,004; 4,005; 4,006