K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

a ) \(x^2+6x+10\)

\(=\left(x^2+2.x.3+3^2\right)+1\)

\(=\left(x+3\right)^2+1\ge1>0\) ( đpcm )

b ) \(x^2-x+1\)

\(=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) ( ddpcm ) 

 

16 tháng 9 2016

x2 + 6x + 10

= x2 + 2 . x . 3 + 9 + 1

= (x + 3)2 + 1

(x + 3)2 lớn hơn hoặc bằng 0

(x + 3)2 + 1 lớn hơn hoặc bằng 1 > 0 (đpcm)

x2 - x + 1

= x2 - 2 . x . 1/2 + 1/4 + 3/4

= (x - 1/2)2 + 3/4

(x - 1/2)2 lớn hơn hoặc bằng 0

(x - 1/2)2 + 3/4 lớn hơn hoặc bằng 3/4 > 0 (đpcm)

31 tháng 7 2016

a) \(x^2+6x+10\)

\(=\left(x^2+2.3x+9\right)+1\)

\(=\left(x+3\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

b) \(x^2-x+1\)

\(=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(\Rightarrow DPCM\)

c) \(x^4-4x^2+5\)

\(=\left[\left(x^2\right)^2-2.2.x^2+2^2\right]+1\)

\(=\left(x^2-2\right)^2+1\ge1>0\)

\(\Rightarrow DPCM\)

2 tháng 9 2021

a, chỉ có luôn ko dương thôi bạn ạ =)))

 \(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)

Vậy biểu thức trên luôn âm với mọi x 

2 tháng 9 2021

luôn âm chứ bạn :)\

3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )

6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

21 tháng 7 2017

a)

\(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5>0\)

b)

\(4x^2+4x+2017=4\left(x^2+x\right)+2017=4\left(x+\frac{1}{2}\right)^2-1+2017=4\left(x+\frac{1}{2}\right)^2+2016>0\)

c)

\(10-6x+x^2=x^2-6x+10=\left(x-3\right)^2-9+10=\left(x-3\right)^2+1>0\)

d)

\(1-x+x^2=x^2-x+1=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

15 tháng 9 2019

\(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Mà 1>0 

\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

28 tháng 6 2017

Ta có : A = x2 - 6x + y2 + 8y + 27

= (x2 - 6x + 9) + (y2 + 8y + 16) + 2 

= (x2 - 2.x.3 + 32) + (y2 + 2.x.4 + 42) + 2

= (x - 3)2 + (y + 4)2 + 2 

Vì (x - 3)2 và (y + 4)2 \(\ge0\forall x\in R\)

Nên : (x - 3)2 + (y + 4)\(\ge0\forall x\in R\)

Do đó : (x - 3)2 + (y + 4)2 + 2 \(\ge2\forall x\in R\)

Hay (x - 3)2 + (y + 4)2 + 2 \(>0\forall x\in R\)

Vậy biểu thức A luôn luôn dương với mọi x thuộc R (đpcm)

28 tháng 6 2017

A=(x2 - 2.3x + 9) + ( y2 + 2.4y + 16 ) + 2

A=(x2 - 2.3x + 32) + (y2 + 2.4y +42) + 2

A=(x-3)2 + (y+4)2 + 2

Vì (x-3)2 + (y+4)luôn > hoặc = 0 với mọi x;y

Nên (x-3)2 + (y+4)2 + 2 luôn > hoặc = 2 với mọi x; y

Vậy A luôn dương(>0)

28 tháng 9 2017

A=x2-6x+10

\(A=\left(x-3\right)^2+1>1\)

\(\Rightarrow A\) luôn dương

28 tháng 8 2020

A = x2 - 6x + 10

= ( x2 - 6x + 9 ) + 1 

= ( x - 3 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

B = x2 + x + 5

= ( x2 + x + 1/4 ) + 19/4

= ( x + 1/2 )2 + 19/4 ≥ 19/4 > 0 ∀ x ( đpcm )

C = 4x2 + 4x + 2 

= 4( x2 + x + 1/4 ) + 1

= 4( x + 1/2 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

D = ( x - 3 )( x - 5 ) + 4

= x2 - 8x + 15 + 4

= ( x2 - 8x + 16 ) + 3 

= ( x - 4 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

E = x2 - 2xy + 1 + y2

= ( x2 - 2xy + y2 ) + 1 

= ( x - y )2 + 1 ≥ 1 > 0 ∀ x, y ( đpcm )

31 tháng 8 2018

\(x^2-6x+10\)

\(=x^2-2.x.3+9+1\)

\(=\left(x-3\right)^2+1>0\)

\(4x^2-20x+27\)

\(=\left(2x\right)^2-2.2x.5+25+2\)

\(=\left(2x-5\right)^2+2>0\)

\(x^2+x+1\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

học tốt

31 tháng 8 2018

a) A=x2 _ 6x + 10

<=> A=x2-6x+9+1

<=> A=(x-3)2+1 luôn dương với mọi x

b) B=4x2 _ 20x + 27

<=> 4x2-20x +25+2

<=> (2x-5)2+2 luôn dương với mọi x

c) C=x2 + x +1

<=> x2+2.x 1/2  + 1/4 +3/4

<=> (x+1/2)2+3/4 luôn dương với mọi x 

9 tháng 8 2018

a)(3x-1)^2=1>0

b)(x+1/2)^2=3/4>0

c)1/2[(2x+1)^2+1]>0

9 tháng 8 2018

a﴿﴾3x‐1﴿^2=1>0

b﴿﴾x+1/2﴿^2=3/4>0

c﴿1/2[﴾2x+1﴿^2+1]>0