Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt (n - 2021, n - 2022) = d \(\left(d\inℕ^∗\right)\)
=> \(\left\{{}\begin{matrix}n-2021⋮d\\n-2022⋮d\end{matrix}\right.\Rightarrow\left(n-2021\right)-\left(n-2022\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
do đó (n - 2021, n - 2022) = 1
=> \(\dfrac{n-2021}{n-2022}\) là phân số tối giản
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)
A tối giản
<=> 3n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc Z
=> n = {-1 ; 1}
\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=1-\frac{5}{3n+2}\)
A tối giản
<=> 3n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
3n + 2 | 1 | -1 | 5 | -5 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc Z
=> n = {-1 ; 1}
Gọi ƯCLN(b,a+b)=d(a,a+b)=d (d ∈∈N*)
⇒⇒ b ⋮d ; a+b ⋮d
⇒⇒ b ⋮d ; a⋮d
Vì \(\dfrac{a}{b}\)tối giản nên ⇒⇒ d= 1
Vậy nếu \(\dfrac{a}{b}\) tối giản thì \(\dfrac{a+b}{b}\) tối giản
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)
Gọi ước chung lớn nhất của
22021 + 32021 và 22022+32022 là d (d\(\in\)N*)
Ta có : \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
Trừ vế với vế ta được 32022 - 2.32021 ⋮ d
⇒ 32021.( 3 - 2) ⋮ d
⇒ 32021 ⋮ d
⇒ d \(\in\){ 1; 3; 32; 33;........32021)
nếu d \(\in\) { 3; 32; 33;.....32021) thì
⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )
vậy d = 1
Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)
A = \(\dfrac{2n+5}{n+3}\)
Gọi ƯCLN của 2n + 5 và n + 3 là d
Ta có \(\left\{{}\begin{matrix}2n+5⋮d\\n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2n+5⋮d\\2.\left(n+3\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2n+5⋮d\\2n+6⋮d\end{matrix}\right.\)
Trừ vế với vế ta có:
2n + 6 - ( 2n + 5) ⋮ d
⇒ 2n + 6 - 2n - 5 ⋮ d
⇒ 1 ⋮ d
Vậy ước chung lớn nhất của 2n + 5 và n + 3 là 1 hay phân số:
A = \(\dfrac{2n+5}{n+3}\) là phân số tối giản
Ta có: \(\dfrac{23n^2-1}{35}\in Z\)
\(\Rightarrow23n^2-1=35k\left(k\in Z\right)\)
\(\Rightarrow23n^2=35k+1\)
Mà 35k + 1 chia cho 5 hoặc 7 đều dư 1 nên 23n2 chia cho 5 hoặc 7 đều dư 1
Hay n không chia hết cho 5, 7
Vậy \(\dfrac{n}{5},\dfrac{n}{7}\) là các phân số tối giản