K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2023

A = \(\dfrac{2n+5}{n+3}\)

Gọi ƯCLN của 2n + 5 và n + 3 là d

Ta có \(\left\{{}\begin{matrix}2n+5⋮d\\n+3⋮d\end{matrix}\right.\) 

      ⇒  \(\left\{{}\begin{matrix}2n+5⋮d\\2.\left(n+3\right)⋮d\end{matrix}\right.\)

      ⇒ \(\left\{{}\begin{matrix}2n+5⋮d\\2n+6⋮d\end{matrix}\right.\)

      Trừ vế với vế ta có:

             2n + 6 - ( 2n + 5) ⋮ d

       ⇒        2n + 6  - 2n - 5 ⋮ d

       ⇒                  1 ⋮ d

Vậy ước chung lớn nhất của 2n + 5 và n + 3 là 1 hay phân số:

A = \(\dfrac{2n+5}{n+3}\) là phân số tối giản

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

28 tháng 2

1.    a. Tính :

1.    a. Tính :

1 tháng 4 2017

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow n^2+1⋮d\)

\(n^3+2n⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}n^3+n⋮d\\n^3+2n⋮d\end{matrix}\right.\)

\(\Rightarrow n⋮d\)

\(n^2+1⋮d\)

\(\Rightarrow\left\{{}\begin{matrix}n^2⋮d\\n^2+1⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\); \(1⋮d\) \(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n^3+2n;n^4+3n^2+1\right)=1\)

Vậy phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) tối giản với mọi \(n\in N\)

\(\Rightarrowđpcm\)

~~Chúc bn học tốt~~

16 tháng 3 2017

Không biết làm ak đệ tử

29 tháng 7 2017

Bài 1:

\(a,\dfrac{n+1}{2n+3}.\)

Đặt \(ƯCLN\left(n+1,2n+3\right)=d.\)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d.\\2n+3⋮d.\end{matrix}\right.\)

\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d.\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d.\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d.\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản \(\forall n\in Z.\)

\(b,\dfrac{2n+3}{3n+5}.\)

Đặt \(ƯCLN\left(2n+3,3n+5\right)=d.\)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d.\\3n+5⋮d.\end{matrix}\right.\)

\(\Rightarrow\left(3n+5\right)-\left(2n+3\right)⋮d.\)

\(\Rightarrow2\left(3n+5\right)-3\left(2n+3\right)⋮d.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d.\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy phân số \(\dfrac{2n+3}{3n+5}\) tối giản \(\forall n\in Z.\)

~ Học tốt!!! ~

29 tháng 7 2017

Là với n thuộc số nguyên đó bạn !!!

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

3 tháng 2 2018

Gọi d là ước chung lớn nhất của 2n+1 và 2n+3

Khi đó \(2n+1⋮d\)và \(2n+3⋮d\)

Do đó \(2n+3-2n-1⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Mặc khác \(2n+1\)không chia hết cho 2 nên d = 1

Do đó \(ƯCLN\left(2n+1;2n+3\right)=1\)

Khi đó phân số \(\frac{2n+1}{2n+3}\)tối giản

c: nếu n=3 thì đây ko phải phân số tối giản nha bạn

b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn

a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn

8 tháng 4 2020

*) Gọi d là ƯCLN (3+n; 2n+5) (d thuộc N*)=> \(\hept{\begin{cases}3+n⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3+n\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6+2n⋮d\\2n+5⋮d\end{cases}}}\)

=> (2n+6)-(2n+5) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (3+n; 2n+5)=1

=> đpcm

*) Gọi d là ƯCLN (4-3n; 2n-3) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}4-3n⋮d\\2n-3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(4-3n\right)⋮d\\3\left(2n-3\right)⋮d\end{cases}\Leftrightarrow}\hept{\begin{cases}8-6n⋮d\\6n-9⋮d\end{cases}}}\)

=> (8-6n)+(6n-9) chia hết cho d

=> -1 chia hết cho d

Mà d thuộc N* => d=1

=> ƯCLN (4-3n;2n-3) =1 => đpcm

1 tháng 5 2019

Gọi x là ước chung của tử số và mẩu số. Vậy nếu 2n+9-2n+5 cũng sẽ chia hết cho x. Mà 2n+9-2n+5=4 nên x thuộc ước của 4. Các ước của 4 sẽ là (4,1,-1,-4). Nhưng vì tử và mẩu số của phân số trên đều là số lẻ (vì 2x sẽ là số chẳng nên cộng với số 5 hoặc 9 sẽ ra số lẻ) nên ước của x là (1,-1)

1 tháng 5 2019

bổ sung thêm vì x thuộc (1,-1). Nên 2n+5/2n+9 là tối giản