K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

1) \(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3=VP\)

2) \(VP=x^2+xy-xy-y^2=x^2-y^2=VT\)

3) \(VP=x^2+2\cdot x\cdot1+1=x^2+2x+1=VT\)

4) \(VP=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3=VT\)

24 tháng 7 2019

1, \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\\ x^3+x^2y-x^2y-xy^2+xy^2+y^3=x^3+y^3\\ x^3+y^3=x^3+y^3\left(đúng\right)\)Vậy ta được đpcm

2, \(x^2-y^2=\left(x-y\right)\left(x+y\right)\\ x^2-y^2=x^2+xy-xy-y^2\\ x^2-y^2=x^2-y^2\left(đúng\right)\)Vậy ta được đpcm

3, \(x^2+2x+1=\left(x+1\right)^2\\ x^2+2x+1=\left(x+1\right)\left(x+1\right)\\ x^2+2x+1=x^2+x+x+1\\ x^2+2x+1=x^2+2x+1\left(đúng\right)\)Vậy ta được đpcm

4, \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\\ x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\\ x^3-y^3=x^3-y^3\left(đúng\right)\)Vậy ta được đpcm

27 tháng 7 2018

Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng

x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)

Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

27 tháng 7 2018

cho minh xin de

10 tháng 10 2020

\(VT=x^4+x^3y+xy^3+y^4-x^4-2x^2y^2-y^4\)

\(=x^3y+xy^3-2x^2y^2\)

\(=xy\left(x^2+y^2-2xy\right)\)

\(=xy\left(x-y\right)^2=VP\)

20 tháng 5 2016

\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x^3+x^2y+xy^2-yx^2-xy^2-y^3\right)\)\(-\left(x^3-x^2y+xy^2+yx^2-xy^2+y^3\right)\)

\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3-x^3+x^2y-xy^2-yx^2+xy^2-y^3\)

\(=-2y^3\)

20 tháng 5 2016

\(\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=-2y^3\)

\(x-y.x^2+xy+y^2-x-y.x^2-xy+y^2=-2y^3\)

\(\left(x+x-x-x\right)-\left(y.y-y\right).\left(x^2.x^2\right)+\left(y^2+y^2\right)=-2y^3\)

\(0-\left(2y-y\right).x^4+2y^2=-2y^3\)

\(0-y.x^4+2y^2=-2y^3\)

\(-y.y^2.x^4+2=-2y^3\)

\(-y^3.x^4+2=-2y^3\)

hình như mk lm sai mk sẽ lm lại cách # thử

a: \(=6x^2-2x-x^3-6x^2+x^3-3x+5x-10+3\)

=-7

b: \(=x^3-y^3+x^3+y^3-2x^3+10=10\)

c: \(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2+30\)

\(=28\)

14 tháng 8 2018

B = (x-1)(2x+1) - (x2-2x-1)

B = 2x2+x-2x-1-x2-2x-1 = x2-3x-2

B = x2+x-4x-2 = x(x+1) - 4(x+1)

B = (x+1)(x-4)

14 tháng 8 2018

\(A=2x\left(x-2\right)-x\left(2x-3\right)\\ =2x^2-4x-2x^2+3x\\ =-x\\ B=\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\\ =x\left(2x+1\right)-\left(2x+1\right)-x^2+2x+1\\ =2x^2+x-2x-1-x^2+2x+1\\ =x^2+x\\ C=\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\\ =x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)-x^3\\ =x^3-x^2y+xy^2+x^2y-xy^2+y^3-x^3\\ =y^3\)

\(D=\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\\ =x\left(12x-3\right)+4\left(12x-3\right)-2x^2-7x\\ =12x^2-3x+48x-12-2x^2-7x\\ =10x^2+38x-12\\ E=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\\ =2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\\ =8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\\ =8x^3+y^3\)

13 tháng 8 2018

\(A=x^4-\left(x^2-1\right)\left(x^2+1\right)=x^4-\left(x^4-1\right)=x^4-x^4+1=1\left(đpcm\right)\)

\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3=2x^2+x-x^3-2x^2+x^3-x+3=3\left(đpcm\right)\)

\(C=x^3+y^3+4-\left(x^2+xy+y^2\right)\left(x-y\right)=x^3+y^3+4-\left(x^3-y^3\right)=x^3+y^3+4-x^3+y^3=2y^3+4\)

=>biểu thức không phụ thuộc vào biến x

=> Đpcm

14 tháng 8 2018

haha