K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

làm ơn giúp mình với

19 tháng 8 2020

A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) (  3x + 7 )

=> A = 6x2 + 23x - 55 - 6x- 23x - 21

=> A = - 55 - 21

=> A = - 76 ( không phụ thuộc vào biến x )

B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )

=> B = 8x3 + 27 - 8x3 + 2

=> B = 27 + 2

=> B = 29 ( không phụ thuộc vào biến x )

C = ( x - 1 )3 - (  x + 1 )3 + 6 ( x + 1 ) ( x - 1 )

=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6

=> C = - 6x2 - 2 + 6x2 - 6

=> C = - 2 - 6

=> C = - 8 ( không phụ thuộc vào biến x )

12 tháng 7 2018

\(B=x^3-y^3-\left(x^2+xy+y^2\right)\left(x-y\right)\)

\(\Rightarrow B=x^3-y^3-\left(x^3-y^3\right)\)

\(\Rightarrow B=0\)

\(\Rightarrow B\)ko phụ thuộc vào g/t của biến 

\(C=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+8\)

\(\Rightarrow C=3x^2+15x-\left(3x^2+18x-3x-18\right)+8\)

\(\Rightarrow C=3x^2+15x-3x^2-15x+18+8\)

\(\Rightarrow C=26\)

Vậy \(C\)ko phụ thuộc vào giá trị của biến 

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

6 tháng 10 2018

Ta có:

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=\left[3x\left(2x+11\right)-5\left(2x+11\right)\right]-\left[2x\left(3x+7\right)+3\left(3x+7\right)\right]\)

\(=\left[\left(6x^2+33x\right)-\left(10x+55\right)\right]-\left[\left(6x^2+14x\right)+\left(9x+21\right)\right]\)

\(=\left[6x^2+23x-55\right]-\left[6x^2+23x+21\right]\)

\(=-55-21=-76\)

Vậy biểu thức A không phụ thuộc vào biến x, y.

22 tháng 8 2020

A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 3x(2x + 11) - 5(2x+  11) - 2x(3x + 7) - 3(3x + 7)

A=  6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

A = (6x2 - 6x2) + (33x - 10x - 14x - 9x) + (-55 - 21) = -76 => không phụ thuộc vào biến x (đpcm)

B = (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 2x(4x2 - 6x + 9) + 3(4x2 - 6x + 9) - 8x3 + 2

= 8x3 - 12x2 + 18x + 12x2 - 18x - 27 - 8x3 + 2

= (8x3 - 8x3) + (-12x2 + 12x2) + (18x - 18x) + (-27 + 2) = -25 => không phụ thuộc vào biến x (đpcm)

22 tháng 8 2020

A= ( 3x - 5 ) ( 2x+11) - (2x+3)(3x+7) 

=\(6x^2+23x-55-\left(6x^2+23x+21\right)\) 

=\(6x^2+23x-55-6x^2-23x-21\)  

= -76 

Vậy A không phụ thuộc vào x

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x

15 tháng 6 2016

\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)

\(=4x^2-2y-5x^2+x^2-4y=-6y\)

\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)

\(=8\)

Vậy BT B ko phụ thuộc vào biến

câu sau tương tự

\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)

\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)

\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)

\(\Rightarrow3x^2+14x-2=0\)

\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)

\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)

15 tháng 6 2016

câu sau tự lm nhé,mk ko lm nữa đâu

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(K=x^2-7x+13\)

\(K=x^2-2x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\left(\frac{7}{2}\right)^2+13\)

\(K=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}+13\)

\(K=\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{7}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{7}{2}\right)^2=0\Rightarrow x=\frac{7}{2}\)

Vậy \(minK=\frac{3}{4}\Leftrightarrow x=\frac{7}{2}\)

12 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(M=-x^2+4x+4\)

\(M=-\left(x^2-4x-4\right)\)

\(M=-\left(x^2-4x+4-8\right)\)

\(M=-\left[\left(x-2\right)^2-8\right]\)

\(M=-\left(x-2\right)^2+8\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+8\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxM=8\Leftrightarrow x=2\)