K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x^2+2x+1}{2x^2+x-1}=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(2x-1\right)}\)

=(x+1)/(2x-1)

25 tháng 7 2023

Đề ạ

loading...  

Ta có: \(2x^2+2x+1\)

\(=2\left(x^2+x+\frac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

hay \(2x^2+2x+1>0\forall x\)(đpcm)

23 tháng 9 2020

Này giải chi tiết cho mk cái bước 3 và 4 đi Nguyễn Lê Phước Thịnh

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta thấy:

$9x^2-6x+2=(9x^2-6x+1)+1$

$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$

Vì $(3x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$

Ta có đpcm.

23 tháng 9 2020
https://i.imgur.com/QBCcqpP.jpg
23 tháng 9 2020

Đặt 2 ra ngoài thì đỡ phải dùng căn đó bnbanhqua

2 tháng 8 2015

CM HĐT là 

VD CM 

( x + y)^2 = x^2 + 2xy + y^2 

Phải không bạn 

2 tháng 8 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

1 tháng 9 2020

Ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\frac{b}{ab}+\frac{a}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(a^2+2ab+b^2-4ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Đăngr thức xảy ra <=> a = b 

29 tháng 7 2020

Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\) (1)

Thay a + b = 1 vào (1) ta được:

\(1^3=a^3+3ab.1+b^3\)

\(1^3=a^3+3ab+b^3\)

Hay: \(a^3+3ab+b^3=1\)

=> đpcm

Ta có: \(VP=\left(a+b\right)^2-4ab\)

\(=a^2+2ab+b^2-4ab\)

\(=a^2-2ab+b^2\)

\(=\left(a-b\right)^2=VT\)(đpcm)