K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

a(b+c) - b(a-c) = ab + ac - ab + bc = ac + bc = c(a+b ) (d9pcm )

13 tháng 7 2016

                             Ta có :

                           \(a\left(b+c\right)-b\left(a-c\right)\)

                         \(=a.b+a.c-b.a+b.c\)

                         \(=\left(a.b-b.a\right)+\left(a.c+b.c\right)\)

                         \(=a.c+b.c=\left(a+b\right).c\)

                     Vậy \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\left(ĐPCM\right)\)

                      Ủng hộ mk nha !!! ^_^

4 tháng 8 2019

1) a( b+c) - b(a-c) = ( a+b) c

VT = a( b+c) - b(a-c) 

= ab + ac - ab + bc

= ac + bc

= c(a + b) (=VP)

2)a (b - c)- a (b+d)= - a (c+d)

VT= a (b - c)- a (b+d)

= ab - ac - ab - ad

= -ac - ad

= -a(c + d) (=VP)

4 tháng 3 2020

\(\text{( a-b)-(a+b)+(2a-b)-(2a-3b)=0}\)

\(\Leftrightarrow\text{ a-b-a-b+2a-b-2a+3b = 0}\)

\(\Leftrightarrow\text{0=0}\)

\(\Rightarrow\text{ĐPCM}\)

\(\left(a+b-c\right)-\left(a-b+c\right)+\left(b+c-a\right)-\left(a-b-c\right)=2b\)

\(a+b-c-a+b-c+b+c-a-a+b+c=2b\)

\(-2a+4b-2c=2b\)

\(-2a+4b-2c-2b=0\)

\(-2a+2b-2c=0\)

\(đpcm\) 

29 tháng 6 2015

a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)

Vậy a(b+c)-b(a-c)=(a+b)c

4 tháng 4 2020

Chứng minh đẳng thức sau với a,b,c thuộc Z:

                 a(b-c)-a(b+d)=-a(c+d)

\(ab-ac-ab+ad=-a\left(c+d\right)\)

\(a.\left(b-c-b+d\right)=-a\left(c+d\right)\)

\(-a.\left(c+d\right)\)= VP

\(\Rightarrowđpcm\)

chúc bạn học tốt

29 tháng 6 2015

1.a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d)

Vậy a(b-c)-a(b+d)=-a(c+d)

2)(a+b)(c+d)-(a+d)(b+c)=ac+ad+bc+bd-ab-ac-bd-dc=ad+bc-ab-cd=a(d-b)-c(d-b)=(a-c)(d-b)

Vậy (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)

31 tháng 1 2019

Ta có:

Vế trái: -a.(c-d)-d.(a+c)

=-ac+ad-ad-cd

=-ac-cd (1)

Vế phải: -c(a+d)=-ac-cd (1)

Vì (1)=(2)

<=> -a.(c-d)-d.(a+c)=-c.(a+d) (đpcm)

(Lưu ý: "đpcm" nghĩa là "điều phải chứng minh".)

31 tháng 1 2019

Lời giải:

1) \(VT=-a.\left(c-d\right)-d.\left(a+c\right)\)

$=-ac+ad-da-dc$

$=-ac-dc$

$=-c(a+d) (đpcm)$

$2) (3a+2).(2a-1)+(3-a).(6a+2)-17.(a-1)$

$=6a^2-3a+4a-2+18a+6-6a^2-2a-17a+17$

$=21$

Vậy giá trị biểu thức không phụ thuộc vào a

10 tháng 2 2017

a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

BL:

Ta có: \(\left(x-y\right)-\left(x-z\right)\)

\(=x-y-x+z\)

\(=z+x-y-x\)

\(=\left(z+x\right)-\left(y+x\right)\)

\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

BL:

Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)

\(=x-y+z-y-z+x-x+y\)

\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)

\(=\left(z-y\right)-\left(z-x\right)\)

\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

c) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
BL:
Ta lại có: \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
\(=ab+ac-ba+bc\)
\(=\left(ab-ba\right)+\left(ac+bc\right)\)
\(=0+\left(a+b\right)c\)
\(=\left(a+b\right)c\)
\(\Rightarrow\) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
\(\rightarrow\) đpcm.
6 tháng 1 2016

tick thì mình sẽ giAỉ , mà lạ thật các cậu lạm dụng quá người ta mất công bỏ chất xám ra cho các cậu lời giải mà ít khi tick lắm

6 tháng 1 2016

câu b là:(a-b)-(c-d)+(b+c)=a+d