K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

a/ a.(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c.(a+b) => dpcm

b/ a.(b-c)-a.(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d) => dpcm

19 tháng 1 2018

a.

a.(b+c)-b.(a-c) = (a+b).c

Ta xét vế trái :

a.(b+c)-b.(a-c)

=a.b +a.c - b.a +b.c

=(a.b+b.c) -(b.a-a.b)

=(a+b).c - 0

=(a+b).c

Vậy a.(b+c)-b.(a-c)= (a+b).c

b.

a.(b-c)-a.(b+d) = -a.(c+d)

Ta xét vế trái :

a.(b-c)-a.(b+d)

=a.b - a.c - a.b - a.d

=(a.b - a.b) - (a.c - a.d)

= 0 - a.(c+d)

= -a.(c+d)

Vậy a.(b-c)-a.(b+d) = -a.(c+d)

❤Good❤ study !!!❤

4 tháng 2 2017

a, (a-b+c)-(a+c)=-b

<=>a-b+c-a-c=-b

<=>(a-a)+(c-c)-b=-b

<=>0+0-b=-b

<=>-b=-b

Vậy (a-b+c)-(a+c)=-b

b) (a+b)-(b-a)+c=2a+c

<=>a+(b-b)+a+c=2a+c

<=>a+a+c=2a+c

<=>2a+c=2a+c

Vậy (a+b)-(b-a)+c=2a+c

c) -(a+b-c)+(a-b-c)=-2b

<=>-a-b+c+a-b-c=-2b

<=>(-a+a)+(c-c)-(b+b)=-2b

<=>0+0-2b=-2b

<=>-2b=-2b

Vậy -(a+b-c)+(a-b-c)=-2b

d) a(b+c)-a(b+d)=a(c-d)

<=>ab+ac-ab-ad=a(c-d)

<=>a(b+c-b-d)=a(c-d)

<=>a(c-d)=a(c-d)

Vậy a(b+c)-a(b+d)=a(c-d)

e) a(b-c)+a(c+d)=a(b+d)

<=>ab-ac+ac+ad=a(b+d)

<=>a(b-c+c+d)=a(b+d)

<=>a(b+d)=a(b+d)

Vậy a(b-c)+a(c+d)=a(b+d)

4 tháng 4 2020

Chứng minh đẳng thức sau với a,b,c thuộc Z:

                 a(b-c)-a(b+d)=-a(c+d)

\(ab-ac-ab+ad=-a\left(c+d\right)\)

\(a.\left(b-c-b+d\right)=-a\left(c+d\right)\)

\(-a.\left(c+d\right)\)= VP

\(\Rightarrowđpcm\)

chúc bạn học tốt

15 tháng 1 2017

Câu a

P = a.(b-a) - b(a-c) - bc = ab - a- b(a-c+c) = ab -ab -a2= -a2

Mà a thuộc tập hợp N* nên P luôn âm

Còn câu b bạn ghi bị sai đề rồi nhưng bạn chỉ cần dùng quy tắc bỏ dấu ngoặc là được bạn nhé

13 tháng 1 2016

các bài toán bên dưới đều có thể áp dụng bđt tổng quát sau: 
a²/x + b²/y + c²/z + d²/t ≥ (a+b+c+d)² /(x+y+z+t) (*-*) 
bao nhiêu cặp số cũng đc trong đó có đk x, y, z, t > 0 
dấu "=" khi a/x = b/y = c/z = d/y 
~ ~ ~ ~ 
chứng minh là hệ quả trực tiếp từ bđt Bunhiacopski 
hoặc cách khác: với 2 cặp số: a²/x + b²/y ≥ (a+b)²/(x+y) 
ta chứng minh bằng biến đổi tương đương sẽ bđt đúng là (ay-bx)² ≥ 0 
ad: a²/x + b²/y + c²/z ≥ (a+b)²/(x+y) + c²/z ≥ (a+b+c)²/(x+y+z) 
cứ bổ sung thêm vào ta cm được cho 4, 5... cặp số 
~ ~ ~ ~ 
1) ad (*-*) với 5 cặp số: 
1/a + 1/a + 1/b + 1/c + 1/d ≥ (5)² /(2a+b+c+d) 
=> 25/(2a+b+c+d) ≤ 2/a + 1/b + 1/c + 1/d 
tương tự: 25/(a+2b+c+d) ≤ 2/b + 1/a + 1/c + 1/d 
25/(a+b+2c+d) ≤ 2/c + 1/a + 1/b + 1/d 
25/(a+b+c+2d) ≤ 2/d + 1/a + 1/b + 1/c 
cộng lại 4 bđt trên: 
25.VT ≤ 5(1/a + 1/b + 1/c +1/d) = 25 => VT ≤ 1 (đpcm) ; dấu "=" khi a = b = c = d = 1 
~ ~ ~ ~ 
2) ad bđt (*-*) với 4 cặp số: 
a/(b+c) + b/(c+d) + c/(d+a) + d/(a+b) = 
= a²/(ab+ac) + b²/(bc+bd) + c²/(cd+ca) + d²/(da+db) ≥ 
≥ (a+b+ c+d)²/(ab+ac +bc+bd + cd+ca + da+db) cần cm ≥ 2 
qui đồng, khai triển rút gọ => cần cm a²+b²+c²+d² ≥ 2ca + 2db 
<=> (a-c)² + (b-d)² ≥ 0 là bđt đúng => đpcm 
~ ~ ~ ~ 
3) hình như lại ghi sai đề, thử thay a = 2, b = c = 1 có: 
a/(b+2a) + b/(c+2a) + c/(a+2b) = 2/5 + 1/5 + 1/4 = 17/20 ≥ 1 (???) 
~ ~ ~ ~ 
4) vẫn ad (*-*): dùng luôn cho 8 cặp số (hoặc tách thành vài lần kủng đc) 
1/a + 3(1/b) + 4(1/c) ≥ (1+3+4)² /(a+3b+4c) 
1/b + 3(1/c) + 4(1/a) ≥ (1+3+4)² /(b+3c+4a) 
1/c + 3(1/a) + 4(1/b) ≥ (1+3+4)² /(c+3a+4b) 

cộng lại hết: 
8(1/a + 1/b + 1/c) ≥ 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b) 
=> 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b) ≤ 8(bc+ca+ab)/abc = 8 
=> 1/(a+3b+4c) + 1/(b+3c+4a) + 1/(c+3a+4b) ≤ 1/8 (đpcm) 
dấu "=" khi a = b = c = 3 
~ ~ ~ ~ ~ 
5) ad (*-*) 
a/(a+2b+3c) + b/(b+2c+3a) + c/(c+2a+3b) = 
= a²/(a²+2ab+3ac) + b²/(b²+2bc+3ab) + c²/(c²+2ac+3bc) ≥ 
≥ (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc) 

mặt khác có bđt: a²+b²+c² ≥ ab+bc+ca 
=> (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca ≥ 3ab+bc+3ca 
=> 2(a+b+c)² ≥ (a+b+c)² + 3ab+3bc+3ca = a²+b²+c² + 5ab+5bc+5ca 
=> (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc) ≥ 1/2 

thay vào trên ta có VT ≥ 1/2 (đpcm); dấu "=" khi a = b = c 

25 tháng 2 2020

https://olm.vn/hoi-dap/detail/26908384795.html

Bạn tham khảo ở đây nha !

 Chúc bạn hok tốt

25 tháng 2 2020

Ta có \(VT=\left(a+b\right)\left(c+d\right)-\left(a+d\right)\left(b+c\right)\)

\(=ac+ad+bc+bd-ab-ac-bd-cd\)

\(=ad+bc-ab-cd\)

\(=a\left(d-b\right)-c\left(d-b\right)=\left(a-c\right)\left(d-b\right)=VP\)(đpcm)

20 tháng 1 2016

A2=b(a-c)-c(a-b)

=ab-bc-ac+bc=ab-ac=a.(b-c)=-20.(-5)=100

=>A=+100

29 tháng 6 2015

1.a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d)

Vậy a(b-c)-a(b+d)=-a(c+d)

2)(a+b)(c+d)-(a+d)(b+c)=ac+ad+bc+bd-ab-ac-bd-dc=ad+bc-ab-cd=a(d-b)-c(d-b)=(a-c)(d-b)

Vậy (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)