Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3\)
Lời giải:
$(a+b)^3-3ab(a+b)$
$=a^3+3a^2b+3ab^2+b^3-(3a^2b+3ab^2)$
$=a^3+b^3$
Ta có đpcm.
\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\left(đpcm\right)\)
Ta xét vế phải trước :
VP = ( a + b ) 3 - 3ab ( a + b )
= \(\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3=VT\)( đpcm )
a) a3 + b3 = ( a+b)3 - 3ab( a + b)
VP= ( a+b)3 - 3ab( a + b)
= a3+ 3a2b+ 3ab2+ b3- 3a2b- 3ab2
= a3 + b3= VT => đpcm
b) a3 - b3 = ( a - b )3 + 3ab ( a - b )
VP= ( a - b )3 + 3ab ( a - b )
= a3- 3a2b+ 3ab2- b3+ 3a2b- 3ab2
= a3 - b3= VT => đpcm
(a+b)3=(a+b)(a+b)(a+b)
=a(a+b)(a+b)+b(a+b)(a+b)
=(a2+ab)(a+b)+(ab+b2)(a+b)
=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)
=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3
=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3
=a3+3a2b+3ab2+b3
vậy (a+b)3 = a3 +3a2b +3ab2 + b3 =>dpcm
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)
Chứng minh đẳng thức:
1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải
2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp
3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b3 =vp
4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp
5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp
6) (a+b)3 =(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp
7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b3 =a3-3a2b+3ab2-b3=vp
Ta có:\(x+y=a\)
=>\(x^2+2xy+y^2=a^2\)
=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)
Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)
=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)
=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)
b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3\)