Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(x^4+x^2\ge0\)
=> đa thức trên <0
=> đt trên vô nghiệm
chú ý: đây là toán lớp 8 mà
a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0
=> pt vô nghiệm
b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3
= (x+1/3)2+1/3>0
=> pt vô nghiệm.
\(a,f\left(x\right)=x^2-10x+27\)
\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)
\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)
\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\) (Vì \(\left(x-5\right)^2\ge0\) \(Vx\) )
Vậy đa thức f(x) vô nghiệm
\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)
\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)
\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)
\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\) (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\) \(Vx\) )
Vậy đa thức g(x) vô nghiệm
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
\(x^2+x+1\)
\(=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x^2+x+1>0\)
=> đa thức trên vô nghiệm
Xét 3 trường hợp
Xét x=0
\(\Rightarrow o^2+0+1=1>0\)\(0\)
\(\Rightarrow\)Với x=0 thì đa thức \(x^2+x+1>0\left(1\right)\)
Xét x>0
\(\Rightarrow x^2\ge0\forall x\)
mà x+1>0
\(\Rightarrow\)\(x^2+x+1>0\forall x>0\)(2)
Xét x<0
\(\Rightarrow\)\(\left(-x\right)^2\ge0\forall x\)<0
\(\Rightarrow x^2-x\ge0\forall x\)<0
mà 1>0
\(\left(-x\right)^2-x+1>0\forall x\)<0
Với x<0 thì \(x^2+x+1>0\forall x< 0\left(3\right)\)
Từ (1);(2) ;(3) \(\Rightarrow\)\(x^2+x+1>0\forall x\)
Vậy\(^{x^2+x+1}\)vô nghiệm
Ta có: x2+x+x+1+4 \(\leftrightarrow\) (x2+x)+(x+1)+4 \(\leftrightarrow\) x.(x+1)+(x+1)+4 \(\leftrightarrow\) (x+1).(x+1)+4\(\leftrightarrow\) (x+1)2+4 Vì (x+1)2 luôn >hoặc = 0 \(\Rightarrow\) (x+1)2+4 luôn > hoặc = 4 Vậy đa thức vô nghiệm
Hồi cô dạy mình vì mũ 2 mà cộng nữa chắn chắn sẽ lớn hơn 0
jfksgdksdbgkj