Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho - x2 - 4x- 20 = 0
=> - [ (x2 + 2x * 2 + 22) + 16] = 0
=> - [ (x + 2 )2 + 16 ] =0
=> - (x + 2 )2 - 16 = 0
mà (x + 2 )2 >= 0
=> - (x + 2 )2 < hoặc = 0
=> - (x + 2 )2 - 16 < 0
Hay - x2 - 4x - 20 < 0
=> Đa thức - x2 - 4x- 20 ko có nghiệm
Vậy .....
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)
\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm
Ta có : C(x) = P(x) + H(x)
=> C(x) = 4x2 - 1 + x4 + 3
=> C(x) = x4 + 4x2 + 2
Mà x4 \(\ge0\forall x\)
4x2 \(\ge0\forall x\)
Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)
=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)
Vậy đa thức C(x) vô nhiệm
a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy đa thức trên vô nghiệm
b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)
Vậy đa thức trên vô nghiệm
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
vậy ,dài lắm,mình có cách ngắn hơn nhiều
- x4 lớn hơn hoặc bằng 0
- x2 lớn hơn hoặc bằng 0
nên x4+x2+2 lớn hơn hoặc bằng 2 ,vậy nên đa thức vô nghiệm
Ta có:
- \(x^4\ge0\)
- \(x^2\ge0\)
\(\Rightarrow x^4+x^2\ge0\)
\(x^4+x^2+2\ge2\)
Vậy đa thức trên vô nghiệm
a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0
=> pt vô nghiệm
b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3
= (x+1/3)2+1/3>0
=> pt vô nghiệm.
\(a,f\left(x\right)=x^2-10x+27\)
\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)
\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)
\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\) (Vì \(\left(x-5\right)^2\ge0\) \(Vx\) )
Vậy đa thức f(x) vô nghiệm
\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)
\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)
\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)
\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\) (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\) \(Vx\) )
Vậy đa thức g(x) vô nghiệm
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
a) ta có \(-x^2\ge0\) với mọi \(x\in R\)
=>\(-x^2\ge0-2>0\)
vậy đa thức \(-x^2+x-2\) không có nghiệm
b)ta có \(x^2-4x+5\) với mọi \(x\in R\)
=>\(x^2\ge0+5>0\)
vậy đa thức \(x^2-4x+5\) không có nghiêm.
a) -x2+x-2 = -(x-1/2)2 +1/4 -2 <0 luôn âm
nên vo nghiem
b) x2 -4x+5 =( x-2)2 +1 >0 luôn duong
nên vn
mk giai k bao h sai