Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
G (x) = x2 + 2x + 3
= x2 + x + x + 1 + 2
= x.(x + 1) + (x + 1) + 2
= (x + 1).(x + 1) + 2
= (x + 1)2 + 2 \(\ge\)2
Vậy G(x) vô nghiệm.
A (x) = x2 - x + 1
= x2 - 1/2x - 1/2x + 1/4 + 3/4
= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4
= (x - 1/2).(x - 1/2) + 3/4
= (x - 1/2)2 + 3/4 \(\ge\)3/4
Vậy A(x) vô nghiệm.
\(G\left(x\right)=x^2+2x+3\)
\(=x^2+x+x+1+2\)
\(=x.\left(x+1\right)+\left(x+1\right)+2\)
\(=\left(x+1\right).\left(x+1\right)+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy \(G\left(x\right)\) vô nghiệm .
\(A\left(x\right)=x^2-x+1\)
\(=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x.\left(x-\frac{1}{2}\right)-\frac{1}{2}.\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(A\left(x\right)\) vô nghiệm
1. Ta có :
f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0
f(x) = m - 1 - 3m + 2 = -2m + 1 = 0
\(\Rightarrow m=\frac{1}{2}\)
2.
a) M(x) = -2x2 + 5x = 0
\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0
N(x) = ( x + 2 ) . ( x - 1/2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)
c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014
vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm
F = x2 - 6x + 8 =0
x2 - 2x - 4x + 8 = 0
x . (x - 2) - 4 . (x - 2) = 0
(x - 4).(x - 2) = 0
=> x - 4 = 0 <=> x = 4
x - 2 = 0 <=> x = 2
b: G(x)=0
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=0\)
=>x=-1 hoặc x=-1/2
c: C(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
=>x=3 hoặc x=4
d: E(x)=0
\(\Leftrightarrow x^2+13x+36=0\)
\(\Leftrightarrow\left(x+9\right)\left(x+4\right)=0\)
=>x=-9 hoặc x=-4
a)f(x)+g(x)=10xmũ2-8x+ 14/3
b)f(x)-g(x)=10x mũ 2 +4x+16/3
nghiệm chưa tính ddcj nha
a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)
b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)
c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)
\(\Leftrightarrow4x=-\frac{16}{3}\)
\(\Leftrightarrow x=-\frac{4}{3}\)
Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3
a, \(E\left(x\right)=-\left(x+1\right)^2+12\)
giả sử đa thức trên có nghiệm khi \(-\left(x+1\right)^2+12=0\)
\(\Leftrightarrow\left(x+1\right)^2=12\Leftrightarrow\left(x+1\right)^2-12=0\)
\(\Leftrightarrow\left(x+1-\sqrt{12}\right)\left(x+1+\sqrt{12}\right)=0\)
Vậy giả sử là đúng nên đa thức trên có nghiệm
b, \(F\left(x\right)=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có : \(\left(x-1\right)^2\ge0\forall x;4>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
c, \(G\left(x\right)=x^2+6x+18=\left(x+3\right)^2+9\)
Ta có : \(\left(x+3\right)^2\ge0\forall x;9>0\)
Vậy đa thức trên ko có nghiệm ( đpcm )
P/s : ý a mình nghĩ chỉ có thế này thôi \(\left(x+1\right)^2+12\)xem lại đề nha