K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

a ) \(VT=\left(a^2-1\right)^2+4a^2\)

\(=a^4-2a^2+1+4a^2\)

\(=a^4+2a^2+1\)

\(=\left(a^2+1\right)^2=VP\left(đpcm\right)\)

b ) \(VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\)

\(=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y+x+y\right)^2\)

\(=\left(2x\right)^2=4x^2=VP\left(đpcm\right)\)

24 tháng 9 2018

a, Ta có:

\(VT=\left(a^2-1\right)^2+4a^2=a^4-2a^2+1+4a^2=a^4+2a^2+1=\left(a^2+1\right)^2=VP\)

\(\Rightarrow dpcm\)

b, Ta có:

\(VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\)

\(=x^2-2xy+y^2+x^2+2xy+y^2+2x^2-2y^2=4x^2=VP\)

\(\Rightarrow dpcm\)

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

a) Ta có: \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left(2x\right)^3+\left(\frac{1}{3}\right)^3-8x^3+\frac{1}{27}\)

\(=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}\)

\(=\frac{2}{27}\)

Vậy: Giá trị của biểu thức \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) không phụ thuộc vào biến

b) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

\(=0\)

Vậy: Giá trị của biểu thức \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) không phụ thuộc vào biến

c) Ta có: \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

\(=yx^4-y^5-yx^4+y^5\)

\(=0\)

Vậy: Giá trị của biểu thức \(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\) không phụ thuộc vào biến

20 tháng 4 2017

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]


= (2x)3 + y3- (2x)3 + y3= 2y3

20 tháng 4 2017

Bài giải:

a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)

= x3 + 33 - (54 + x3)

= x3 + 27 - 54 - x3

= -27

b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)

= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]

= [(2x)3 + y3]- [(2x)3 - y3]

= (2x)3 + y3- (2x)3 + y3= 2y3

12 tháng 11 2017

a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)

\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\\ =3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\=-10xy+2y^2 \)

b) \(3\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)

\(=3\left(4x^2+20x+25\right)-3\left(1+4x\right)\left(1-4x\right)\)

\(=12x^2+60x+75-3\left(1-16x^2\right)\)

\(=12x^2+60x+75-3+48x^2\)

\(=60x^2+60x+72\)

13 tháng 11 2017

câu b là \(^{2\left(2x+5\right)^2-\left(4x+1\right)\cdot\left(1-4x\right)}\) xin lỗi mk chép đề sai ạ

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt