Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37\) (Vì \(x-y=7\))
\(=100\)
Vậy \(A=100\)
b) Ta có: \(B=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10\)
\(=25\)
Vậy \(B=25\)
c) Ta có : \(C=\left(x-y\right)^2\)
\(=x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)-2xy\)
\(=26-2.5\) (Vì \(x^2+y^2=26\) ; \(xy=5\))
\(=16\)
Vậy \(C=16\)
2: a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2\)
\(=x^2+2xy\)
\(=x\left(x+2y\right)\) \(\left(dpcm\right)\)
b) \(\left(x^2+y^2\right)^2-2xy^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\) \(\left(dpcm\right)\)
c) \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(=\left(x^2-2xy+y^2\right)+4xy\)
\(=\left(x-y\right)^2+4xy\) \(\left(dpcm\right)\)
Chúc bn học tốt ✔✔✔
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
Mà \(x-y=7\)
\(\Rightarrow A=7^2+2.7+37\)
\(A=100\)
b) \(B=x^2+4y^2-2x+10+4xy-4y\)
\(B=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(B=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Mà \(x+2y=5\)
\(\Rightarrow B=5^2-2.5+10\)
\(B=25\)
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x\)
Thay x=15 \(\Rightarrow A=9.15=135\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
\(=6x^2y^2-6xy^3-8x^3+8x^2y^2+5x^2y^2-5xy^3\)
\(=19x^2y^2-11xy^3-8x^3\)
Thay x=1/2 ; y=2 vào B \(\Rightarrow19.\left(\frac{1}{2}\right)^2.2^2-11\cdot\frac{1}{2}\cdot2^3-8\cdot\left(\frac{1}{2}\right)^3\)
\(=19-44-1\)
\(=-26\)
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải
bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt