K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

BĐT Nesbitt  nhé ko phải Nesbit đâu .V
Bđt đấy đây: Cho a,b,c dương

CMR: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Giải

Ta có: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

      \(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

       \(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

       \(=\frac{1}{2}.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

Áp dụng bđt Cô-si cho 3 số dương được

\(\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)

            \(\ge\frac{1}{2}.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}.3.\sqrt[3]{\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)

                 \(=\frac{1}{2}.9.\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}-3\)

                  \(=\frac{9}{2}-3\)

                   \(=\frac{3}{2}\)

Dấu "='' xảy ra <=> a=b=c

Vậy ...........

31 tháng 12 2018

BĐT Nesbit: Với a,b,c dương:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(BĐT\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

\(\Leftrightarrow2\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)

Dùng bất đẳng thức cô si hai lần vào vế trái sẽ có điều cần chứng minh.

29 tháng 4 2018

vết nhầm

29 tháng 4 2018

:v tự viết tự trả lời lun kìa haha !#Huy$%^&*(Ơ}

2 tháng 8 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

1 tháng 9 2020

Ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\frac{b}{ab}+\frac{a}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(a^2+2ab+b^2-4ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Đăngr thức xảy ra <=> a = b 

17 tháng 3 2019

nhân chéo lên

nhân a+b+c từ 9/a+b+c sang vế trái

vế phải còn 9

sau đó nhân vế trái ra 

sử dụng bdt cosi là ra nha bn

mik lớp 7 sory

4 tháng 2 2017

Ta có: 

\(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

\(\ge a^4b^2c^2+b^4c^2a^2+c^4a^2b^2=a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Cái bất đẳng thức áp dụng trong bài là:

\(x^2+y^2+z^2\ge xy+yz+zx\)

4 tháng 2 2017

  ĐẶt 2^a = x; 2^b=y; 2^c=z;=> x;y;z>0 

dpcm<=> x^3+y^3+z^3 ≥x+y+z và xyz = 2^a.2^b.2^c =2^(a+b+c)=1 

Ta có: x^3+y^3 = (x+y)(x²+y²-xy).Vì x²+y² ≥ 2xy => x^3+y^3 ≥xy(x+y) 

Tương tự ta có: y^3+z^3≥ yz(y+z) 

z^3+ x^3≥ xz(x+z) 

Cộng vế với vế ta có: 

2(x^3+y^3+z^3) ≥ x²y+ xy² + y²z+yz²+x²z+xz² 

Cộng 2 vế với x^3+y^3 +z^3 ta có: 

3(x^3+y^3+z^3) ≥ x²(x+y+z) + y²(x+y+z) + z²(x+y+z) = (x+y+z)(x²+y²+z²) (*) 

Theo cô si ta có: 

x²+y²+z² ≥3.(x².y².z²)^1/3 = 3 (vì xyz=1) 

=> 3(x^3+y^3+z^3) ≥ 3(x+y+z) 

=> x^3+y^3+z^3 ≥ x+y+z 

=> dpcm 

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+zx\)

Dấu "=" xảy ra khi: x = y =z

Ta có: \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\) 

Dấu "=" xảy ra khi a = b = c

14 tháng 1 2018

bạn ơi vì sao \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\)

14 tháng 1 2017

CMR : a) Có thể tìm được số có dạng 199119911991...19910...0 chia hết cho 1992

Help