Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2019\equiv-1\left(mod2020\right)\Rightarrow2019^{2021}\equiv-1\left(mod2020\right)\)
\(2021\equiv1\left(mod2020\right)\Rightarrow2021^{2023}\equiv1\left(mod2023\right)\)
\(\Rightarrow2019^{2021}+2021^{2023}\equiv-1+1\equiv0\left(mod2020\right)\)
Hay 20192021 + 20212023 chia hết 2020
a)
\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)
b)
B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)
2) \(43^{2020}+43^{2021}=43^{2020}\left(1+43\right)=43^{2020}.44\)
Mà \(44⋮11\Rightarrow43^{2020}.44⋮11\Rightarrow43^{2020}+43^{2021}⋮11\)
Phần 1 đang nghĩ -.-
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
\(a^{2020}+b^{2020}=a^{2021}+b^{2021}=a^{2022}+b^{2022}\) (1)
Ta có : \(a^{2021}+b^{2021}=a^{2022}+b^{2022}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2022}+a^{2021}b+b^{2022}+ab^{2021}-a^{2021}b-ab^{2021}\)
\(\Leftrightarrow a^{2021}+b^{2021}=a^{2021}\left(a+b\right)+b^{2021}\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a^{2021}+b^{2021}=\left(a^{2021}+b^{2021}\right)\left(a+b\right)-ab\left(a^{2020}+b^{2020}\right)\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}}\)
(+) Thay \(a=1\)vào \(\left(1\right)\)ta được :
\(b^{2020}=b^{2021}=b^{2022}\Leftrightarrow\orbr{\begin{cases}b=0\\b=1\end{cases}\Leftrightarrow}b=1\left(b>0\right)\)
(+) Thay \(b=1\)vào (1) ta được :
\(a^{2020}=a^{2021}=a^{2022}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}\Leftrightarrow}a=1\left(a>0\right)\)
\(\Rightarrow a=b=1\)\(\Rightarrow a^{2020}+b^{2021}=1^{2020}+1^{2021}=2\)
ko chắc
1+1=2 hoặc 0+2=2 nhưng chỉ có thể là 1+1 vì:
-1nhân 1 =1 nên a^2020=1,b cũng thế
-0+2=2 thì b=2 nhưng b.b ko thể bằng 2 vì 1.1=1 , 2.2=4