K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

Ta có:\(A=4^{13}+32^5-8^8\)

\(A=...4+....2-...6\)

\(A=....0\)

Vì các số có chữ số tận cùng là 0 và 5 thì chia hết cho 5

=> A chia hết cho 5(có chữ số tận cùng là 0)

28 tháng 3 2017

\(4^{13}=\left(4^2\right)^6\times4=\left(...6\right)^6\times4=\left(...6\right)\times4=\left(...4\right)\)Vậy chữ số tận cùng của 413 là 4.

\(32^5=32^4\times32=\left(...6\right)\times32=\left(...2\right)\)Vậy chữ số tận cùng của 325 là 4.

\(8^8=\left(8^4\right)^2=\left(...6\right)^2=\left(...6\right)\)Vậy chữ số tận cùng của 88 là 4.

Ta có : (...4) + (...2) - (...6) = (...0) Vậy chữ số tận cùng của A = 0 \(\Rightarrow\) A chia hết cho 5.

Vậy A chia hết cho 5 (đpcm).

 
27 tháng 6 2015

a)2004100+200499=200499(2004+1)=201499.2005

=>201499.2005chia hết cho 2005

=> 2004100+200499 chia hết cho 2005

b) 413+325-88

=(22)13+(25)5-(23)8

=226+225-224

=224(22+2-1)

=225.5

=>225chia hết cho 5

=> 413+325-88 chia hết cho 5

18 tháng 6 2015

\(4^{13}+32^5-8^8=67108864+33554432-16777216=83886080\)

Su khi ta tính xong, ta đem kết quả tính hồi nãy đem chia cho 5, ta ra kết quả:    

\(83886080:5=2097152\)

Vậy kết quả là: \(4^{13}+32^5-8^8\) chia hết cho \(5\)

23 tháng 7 2015

 

a.2014100  + 201499

=201499.(2014+1)

=201499.2015

=> 2014100  + 201499 chia hết cho 2015

 b.31994 + 31993   31992 

=31992.(32+3-1)

=31992.11

=>31994 + 31993   31992 chia hết cho 11

c. 413 _ 325 _ 88

=(22)13-(25)5-(23)8

=226-225-224

=224.(22-2-1)

=224.5

=> 413 _ 325 _ 8chia hết cho 5

a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)

b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)

c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)

Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5

Chúc bạn học tốt

7 tháng 11 2019

1.

\(\left(x+2\right)^3=\frac{1}{8}\)

\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow x+2=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}-2\)

\(\Rightarrow x=-\frac{3}{2}\)

Vậy \(x=-\frac{3}{2}.\)

2.

b) Ta có:

\(5^5-5^4+5^3\)

\(=5^3.\left(5^2-5+1\right)\)

\(=5^3.\left(25-5+1\right)\)

\(=5^3.21\)

\(21⋮7\) nên \(5^3.21⋮7.\)

\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)

c) Ta có:

\(2^{19}+2^{21}+2^{22}\)

\(=2^{19}.\left(1+2^2+2^3\right)\)

\(=2^{19}.\left(1+4+8\right)\)

\(=2^{19}.13\)

\(13⋮13\) nên \(2^{19}.13⋮13.\)

\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 11 2019

bạn ơi ko ấy đc câu 2a hả ???

10 tháng 6 2018

a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)

                            \(=7^4.\left(7^2+7-1\right)\)

                            \(=7^4.55\)

Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)

b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)

                                    \(=10^6.\left(10^3+10^2+10\right)\)

                                    \(=10^6.1110\)

Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)

                                   \(=3^{28}-3^{27}-3^{26}\)

                                   \(=3^{26}.3^2+3^{26}.3+3^{26}.1\)

                                   \(=3^{26}.\left(3^2+3+1\right)\)

                                   \(=3^{24}.3^2.5\)

                                   \(=3^{24}.45\)

Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)

d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)

                             \(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)

                             \(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)

                             \(=2^{162}.3^{54}.3^{72}.2^{34}\)

                             \(=2^{196}.3^{126}\)

                            \(=2^{189}.2^7.3^{126}\)

                           \(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)

                           \(=\left(8^{63}.9^{63}\right).2^7\)

                          \(=72^{63}.2^7\)

Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)

10 tháng 6 2018

hè rùi đó nha 

12 tháng 10 2021

a/ \(2^{n+3}-32=2^3.2^n-32=8\left(2^4-4\right)⋮8\)

b/ \(\left(3^8+3^7\right)-\left(2^8+2^7\right)=3^7\left(3+1\right)-2^7\left(2+1\right)=\)

\(=2^2.3^7-2^7.3=2^2.3\left(3^6-2^5\right)=12\left(3^6-2^5\right)⋮12\)

10 tháng 12 2016

Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn

 

10 tháng 12 2016

1. Xét 32^9 và 18^13

ta có 32^9=(2^5)^9=2^45

18^13>16^13=(2^4)^13=2^52

vì 18^13>2^52>2^45 nên 18^13>32^9

2.

a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)

Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)

mà A có tcung là 5 nên A \(⋮\)5

A có tổng các cso là 9 nên A\(⋮\)9

vậy A \(⋮\)45

d, bn xem có sai đề ko nhé

3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)

x+y+z=1/2 hoặc -1/2

còn lai bn tự tính nhé