K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

\(A=2+2^2+2^3+2^4+2^5+...+2^{99}+2^{100}\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=1\left(2+2^2+2^3+2^4+2^5\right)+2^5\left(2+2^2+2^3+2^4+2^5\right)+...+2^{95}\left(2+2^2+2^3+2^4+2^5\right)\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)\left(1+2^5+...+2^{95}\right)\)

\(A=62\left(1+2^5+...+2^{95}\right)⋮62\left(đpcm\right)\)

1 tháng 1 2018

Mình nghĩ bạn hơi sai đề rồi

\(A=2+2^2+2^3+2^4+2^5+...+2^{100}\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=62+...+2^{95}.62\)

\(A=62\left(1+...+9^{95}\right)\)chia hét 62 

\(\Rightarrow dpcm\)

8 tháng 1 2018

\(A=2+2^2+.........+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+.........+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(2+2^2+2^3+2^4\right)+.....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=2.62+.......+2^{96}.62\)

\(\Leftrightarrow62\left(2+......+2^{96}\right)⋮62\left(đpcm\right)\)

6 tháng 1 2018

A= 2+22+23+24+25+...............299+2100 

A = ( 2 + 22 + 23+24+25)+....+ ( 296+297+298+299+2100)

A =  ( 2 + 22 + 23+24+25)+....+ 295(  2 + 22 + 23+24+2)

A = 62 + ........ + 295 . 62

A = 62 . ( 1 + ..........+ 295  )

Vì 62 \(⋮\)62 nên A \(⋮\)62

Vậy A chia hết cho 62

6 tháng 1 2018

Phân tích sao cho A có một thừa số là 62 hoặc chia hết cho 62 là được

24 tháng 10 2018

\(S1=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6.\left(5+5^3+...+5^{99}\right)⋮6\)

câu b tương tự

\(S3=16^5+21^5\)

vì 16+21=33 chia hết cho 33

=>165+215 chia hết cho 33

P/S: theo công thức:(n+m chia hết cho a=> nb+mchia hết cho a)

S1 = 5+52+53+...+599+5100

=5. (1+5)+53 . (1+5) + ... + 599.(1+5)

= 5.6 +53.6+..+ 599.6

=6.(5+53 + ... +599):6

vậy x = ...

b)2+22+23+...+299+2100

=2.(1+2)+23.(1+2) + ... + 299.(1+2)

=2.3+23+..+299):3

= ....

c)165+215

vì 16+21 chia hế 33 nên

theo công thức(n+m chia hết cho a=(nb+mb)

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^

29 tháng 12 2017

Ta thấy \(A=2+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...2^{96}\left(1+2+4+8+16\right)\)

\(A=31.\left(2+2^6+...+2^{96}\right)\)

\(A=31.2.\left(1+2^5+...+2^{95}\right)\)

\(A=62.\left(1+2^5+...+2^{95}\right)⋮62\)

Vậy A chia hết cho 62.

29 tháng 12 2017

cám ơn bạn nha a hihi

4 tháng 1 2018

Ta có 62 = 31 . 2

Mà A = 2 + 22 + .... + 299 + 2100 \(⋮\)2                                                  ( 1 )

A =  2 + 22 + .... + 299 + 2100 

A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 22 + 2+ 24 ) + ... + 296 . ( 1 + 2 + 22 + 2+ 2

A = 2 . 31 + ... + 296 . 31 = 31 . ( 2 + ... + 296 ) \(⋮\)31                                       ( 2 )

Từ 1 và 2 => A chia hết cho 2 , A chia hết cho 31 => A chia hết cho 2 . 31 => A chia hết cho 62

Vậy A chia hết cho 62

4 tháng 1 2018

A=(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)

A=1.(2+22+23+24+25)+25(2+22+23+24+25)+...+295(2+22+23+24+25)

A= 1.62+25.62+...+295.62

A=62(1+25+...+295)

suy ra A chia hết cho 62

31 tháng 3 2015

Bạn xem cách này nhé :

A = 1 . ( 1 .2 .2^2 . 2^3 ) . 2^4 ( 1 . 2 . 2^2 . 2^3 ) ........ 2^97 ( 1 . 2 .2^2 . 2^3 ) 

A = 1 . 36 .2^4 . 36 ..............2^97 .36

vì 36 chia hết cho 6 suy ra Achia hêt cho 6 ( điều phải chứng minh ) .