K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

=2x2-3/2x-3/2x+9/4+11/4=x2+x2-3/2x-3/2x+9/4+11/4=x2+x(x-3/2)-3/2(x-3/2)+11/4

=x2+(x-3/2)2+11/4 

do x2+(x-3/2)2>0=>x2+(x-3/2)2+11/4>11/4>0 Vx

=>2x2-3x+5 vo nghiem

1 tháng 5 2016

Ta có: \(2x^2-3x+5=\) \(2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)\)

                                       \(=2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{31}{8}\)

                                       \(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\) (áp dụng hằng đẳng thức)

Vì \(\left(x-\frac{3}{4}\right)^2\ge0\) nên \(2\left(x-\frac{3}{4}\right)^2\ge0\)

\(\Rightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)

Vậy đa thức \(2x^2-3x+5\) ko có nghiệm

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

24 tháng 6 2020

Ta có : \(P\left(x\right)=0< =>x^2+3x+5=0\)

Lại có : \(\Delta=3^2-4.5=9-20=-11\)

Vì delta < 0 nên đa thức trên vô nghiệm 

24 tháng 6 2020

p(x) = x^2 + 3x + 5

= x^2 + 2.3/2.x + 9/4 + 2.75

= (x + 3/2)^2 + 2.75

có (x + 3/2)^2 > 0

=> p(x) > 2.75

=> vô nghiệm

30 tháng 3 2019

Ta có: \(3x^4+3x^2+1=3\left(x^4+x^2+\frac{1}{3}\right)=3\left(x^4+2.x^2.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{1}{3}\right)\)

\(=3\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\right]\ge3.\frac{1}{12}=\frac{1}{4}>0\)

Suy ra vô nghiệm.

22 tháng 4 2018

Ta có :

x4 + 3x2 + 3

= ( x2 )2 + 2 . \(\frac{3}{2}\). x2 + \(\left(\frac{3}{2}\right)^2\)\(\frac{3}{4}\)

= ( x2 + \(\frac{3}{2}\))2 + \(\frac{3}{4}\)> 0

Vậy ...

22 tháng 4 2018

thank bạn nhìu

28 tháng 4 2016

x^2 - 3x + 3

=x^2 - 1,5x - 1,5x + 2,25+0,75

=x(x-1,5)-1,5(x-1,5)+0,75

=(x-1,5)^2 + 0,75 >= 0,75 => vô nghiệm

7 tháng 5 2016

Đặt đa thức đó là A

Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)

\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)

\(A\ge\frac{5}{2}>0\)

Vậy A vô nghiệm

7 tháng 5 2016

2x^2>=0 voi moi x 

2x >=0 với mọi x 

3>0

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

Sửa đề \(2x^2-x^2+9\)

\(=x^2+9\)

Do \(x^2\ge0\)

\(\Rightarrow x^2+9\ge9\)

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)

Where is VT ?