K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

2155555555555555555555555

13 tháng 2 2016

Ta có:

\(21^{39}+39^{21}=\left(21^{39}-1\right)+\left(39^{21}+1\right)\)

Vì  \(21^{39}-1=20\left(21^{38}+21^{37}+...+1\right)\)  chia hết cho \(20\) và  \(39^{21}+1=40\left(39^{20}-39^{19}+...+1\right)\)  chia hết cho  \(20\)

Do đó,  \(\left(21^{39}-1\right)+\left(39^{21}+1\right)\)  chia hết cho  \(20\)  hay \(21^{39}+39^{21}\) chia hết cho  \(20\)    \(\left(\text{*}\right)\)

Mặt khác, ta cũng có \(21^{39}+39^{21}=\left(21^{39}-3^{39}\right)+\left(39^{21}-3^{21}\right)+\left(3^{39}+3^{21}\right)\)

Do   \(21^{39}-3^{39}=18\left(21^{38}+...+3^{38}\right)\)  chia hết cho  \(9\)  \(\left(1\right)\)

       \(39^{21}-3^{21}=36\left(39^{20}+...+3^{20}\right)\)  chia hết cho  \(9\)  \(\left(2\right)\)

 và   \(3^{39}+3^{21}=3^{21}\left(3^{18}+1\right)=3\left(3^2\right)^{10}\left(3^{18}+1\right)\)  chia hết cho  \(9\)  \(\left(3\right)\)

Từ \(\left(1\right);\)  \(\left(2\right)\)  và \(\left(3\right)\) , suy ra  \(21^{39}+39^{21}\)  chia hết cho \(9\)   \(\left(\text{*}\text{*}\right)\)

Lại có:  \(\left(20;9\right)=1\)  \(\left(\text{*}\text{*}\text{*}\right)\)

Từ \(\left(\text{*}\right);\)  \(\left(\text{*}\text{*}\right)\)  và  \(\left(\text{*}\text{*}\text{*}\right)\)  suy ra \(21^{39}+39^{21}\)  chia hết cho  \(20.9=180\)

25 tháng 2 2018

Ta có :

\(21^{30}+39^{21}=\left(21^2\right)^{15}+\left(39^2\right)^{10}.39\)

\(=\left(9.45+36\right)^{15}+\left(33.45+36\right)^{20}.39\)

\(=BS45+36^{15}+BS45+36^{20}.39\)

\(=BS45+36^{15}\left(36^5+19\right)\)

\(36^5+19⋮45\) nên

\(BS45+36^{15}\left(36^5+19\right)=BS45+36^{15}.45a=BS45⋮45\)(đpcm)

20 tháng 12 2018

dựa vào bài của mình nhé pham ba hoang

\(\text{Ta có :}21⋮3\Rightarrow21^{30}⋮9\text{ và }39⋮3\Rightarrow39^{21}⋮9\)

\(\Rightarrow21^{30}+39^{21}\text{c 9}(1)\)

\(\text{Ta có :}21^{30}\equiv1^{30}\equiv1(\text{mod 5})\text{ và }39^{21}\equiv(-1)^{21}=-1(\text{mod 5})\)

\(\Rightarrow21^{30}+39^{21}\equiv1+(-1)=0(\text{mod 5})\text{ hay }21^{30}+39^{21}⋮5\)

\(\text{Lại có :}(9;5)=1\text{ nên từ}(1)\text{ và }(2)\Rightarrow21^{30}+39^{21}⋮45\)

4 tháng 1 2018

ta có \(21⋮3\Rightarrow21^{39}⋮9;39⋮3\Rightarrow39^{21}⋮9\Rightarrow21^{39}+39^{21}⋮9\) (1)

Mà \(21\equiv1\left(mod5\right)\Rightarrow21^{39}\equiv1\left(mod5\right);39\equiv-1\left(mod5\right)\Rightarrow39^{21}\equiv-1\left(mod5\right)\)

=>\(21^{39}+39^{21}\equiv0\left(mod5\right)\Rightarrow21^{39}+39^{21}⋮5\) (2)

Từ (1) và (2) =>\(21^{39}+39^{21}⋮45\left(ĐPCM\right)\)

^_^

10 tháng 10 2017

\(A=21^{30}+39^{21}\)

Ta thấy 2130 có tận cùng là 1; 3921 có tận cùng là 9.

Vậy nên A có tận cùng là 0 hay A chia hết cho 5.

Lại có \(A=21^{30}+39^{21}=3^{30}.7^{30}+3^{21}.13^{21}=9\left(3^{28}.7^{30}+3^{19}.13^{21}\right)\) nên A chia hết cho 9.

Ta có (5;9) = 1 nên A chia hết cho 45.

9 tháng 1 2018

Có 21^2018 luôn có chữ số tận cùng là 1 

Có 39 là số có c/s tận cùng là 9 => 39^2017 có c/s tận cùng là 9 ( vì 2017 là số mũ lẻ )

=> 21^2018 + 39^2017 có c/s tận cùng là 0 nên \(⋮5\)(1)

Có \(21^{2018}+39^{2017}=21^{2016}\cdot21^2+39^{2015}\cdot39^2\)

\(=21^{2016}\cdot3^2\cdot7^2+39^{2015}\cdot3^2\cdot13^2\)

\(=21^{2016}\cdot9\cdot7^2+39^{2015}\cdot9\cdot13^2\)

\(=9\cdot\left(21^{2016}\cdot7^2+39^{2015}\cdot13^2\right)\)

\(\Rightarrow21^{2018}+39^{2017}⋮9\left(2\right)\)

Từ (1) và (2) mà ước chung lớn nhất (5;9)=1 => \(21^{2018}+39^{2017}⋮45\)(vì 5*9=45) (điều phải chứng minh)

10 tháng 7 2018

Ta có:

2931<3031=(3.10)31=331.1031=330.3.1030.10=(33)10.(103)10.3.10=2711.1000011

3921<4021=(4.10)21=421.1021=420.4.1020.10=(42)10.(102)10.4.10=1611.100011

Vì 2931<3031 và 3921<4021

Mà 2711.100011>1611.10011

nên 2931>3921

Mình cũng không chắc nữa bn tham khảo thôi