Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}=k\)
\(\Rightarrow k^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{abc}{bcd}=\frac{a^3+c^3+abc}{c^3+b^3+bcd}\)(1)
Ta lại có : \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\frac{a^3+c^3+abc}{c^3+b^3+bcd}\) (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\)
\(\frac{a+b^3}{c+d^3}=\frac{bk+b^3}{dk+d^3}\)
Đề bài sai nhé bạn
Bài 1
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy .....
Bài 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}\)\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
\(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>Đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)
\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)
\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
Đặt \(\frac{a}{b}\)= \(\frac{c}{d}\)= k => a= bk ; c = dk
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)= \(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)= \(\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}\)= \(\frac{bk.b}{dk.d}\)= \(\frac{b^2}{d^2}\) (2)
Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\)
\(1,\)
\(a,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)
\(b,\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)
\(3,\)
\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)
\(\Rightarrow\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\text{}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(4,\) https://hoc24.vn/hoi-dap/question/157445.html
Ta có : \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\) (1)
Áp dụng tình chất dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\) (2)
Từ (1) và (2) \(\Leftrightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(ĐPCM\right)\)
Từ \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)
mà \(\left(\frac{a}{c}\right)^3=\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\)( đpcm )