Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ba ý đầu mị lm ntn này nek, coi đúng hông ha^^
a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung
=>ABD=ACE(ch-gn)
ý b bỏ ha, lm ý c
AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A
=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)
xét tam giác ABC cân tại A:
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và (2) => góc AED=EBC
mak hay góc mày ở vtris đồng vị nên ED//BC
Xét tgiac ACE. ADB:
góc A chung
D=E=90¤
AB=AC
=> Tgiac ACE==ABD (c-h-g-n)
=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))
b) BD giao CE tại G=> G là trực tâm tgiac ABC
=> AG vuông góc với BC
c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)
=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B
A B C D E H I
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)
Giải:
c) Ta có: tam giác ABD = tam giác ACE (chứng minh trên)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A (dấu hiệu nhận biết)
=> Góc AED = góc AED = (180o - góc DAE) : 2
hay góc AED = (180o - góc BAC) : 2 (1)
Lại có: tam giác ABC cân tại A (gt)
=> AB = AC (định lí)
Góc ABC = góc ACB = (180o - góc BAC) : 2 (2)
Từ (1), (2) => Góc AED = góc ABC
Mà 2 góc này ở vị trí đồng vị
=> DE // BC (dấu hiệu nhận biết) (đpcm)
d) Vì tam giác BCH cân tại H (chứng minh trên)
=> BH = CH (định lí)
Xét tam giác ABH và tam giác ACH có:
AH là cạnh chung
AB = AC (chứng minh trên)
BH = CH (chứng minh trên)
=> Tam giác ABH = tam giác ACH (c.c.c)
=> Góc BAH = góc CAH (2 góc tương ứng)
hay góc BAK = góc CAK
Ta có: góc ABC = góc ACB (chứng minh trên) => Góc ABK = góc ACK
Xét tam giác ABK và tam giác ACK có:
Góc BAK = góc CAK (chứng minh trên)
AB = AC (chứng minh trên)
Góc ABK = góc ACK (chứng minh trên)
=> Tam giác ABK = tam giác ACK (g.c.g)
=> BK = CK (2 cạnh tương ứng)
Xét tam giác BHK và tam giác CKM có:
BK = CK (chứng minh trên)
Góc BKH = góc CKM (2 góc đối đỉnh)
HK = KM (vì K là trung điểm của HK)
=> Tam giác BHK = tam giác CMK (c.g.c)
=> Góc HBK = góc KCM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => BH // CM (dấu hiệu nhận biết)
=> BD // CM
=> Góc BDC + góc DCM = 180o
=> Góc DCM = 180o - góc BDC = 180o - 90o = 90o
=> MC _|_ AC
=> Tam giác ACM vuông tại C (đpcm)
Xét tgiac ACE. ADB:
góc A chung
D=E=90¤
AB=AC
=> Tgiac ACE==ABD (c-h-g-n)
=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))
b) BD giao CE tại G=> G là trực tâm tgiac ABC
=> AG vuông góc với BC
c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)
=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B