K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0
18 tháng 2 2020

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

mình không biết

13 tháng 2 2016

a) Ta có BD và CE đều vuông góc với d

   Nên góc CEA=góc BDA (=90 độ)

  Mà 2 góc này ở vị trí đồng vị

  Nên BD//CE

b)  Ta có d// BC

  ---------> góc ECB=góc DBC=góc CED ( =90 dộ )

 Nên ECDB là HCN

Mà ABC là vuông cân            nên góc ECA=góc  DBA= 45 độ

-------->tam giác CEA = tam giác DBA ( cạnh huyền góc nhọn)

c)( mình lười bấm quá nên mình làm tắt nha)

 Chứng minh góc CAE= góc BAD   ( do góc ECA= góc DBA  và góc ACB=góc EAC=45 độ do ED//BC)

 Nên CE=EA và DB=AD, mặt khác AE=AC ( do 2 tam giác bằng nhau cm câu b)

 

 

 

 

   

 

  

14 tháng 2 2020

thanksyeuvui

14 tháng 2 2020

thanksyeu

24 tháng 1 2017

CO TAM GIAC ABC CAN TAI A

=>AB=AC( DN TAM GIÁC CÂN)

SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)

CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ

CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ

MÀ GÓC ABC = GÓC ACB( CMT)

SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)

=> GÓC ABD= GÓC ACE

XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:

AB=AC( CMT)

GÓC ABD = GỐC ACE ( GMT)

DB=EC( GT)

=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)

=>AD=AE( 2 CẠNH TƯƠNG ỨNG)

=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)

b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)

=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)

CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM

CO ME = MC+CE

MD=MB+BD

MA CE=BD

MB=MC

=>MD=ME

XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:

AD= AE(CM CÂU a)

GÓC D=GÓC E(CMT)

MD=ME( CMT)

SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)

=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)

SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE

CÓ TAM GIÁC AMD = TAM GIÁC AME

SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)

MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ

SUY RA AMD+AME = 180 ĐỘ

CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ

SUY RA AM VUONG GOC VS DE 

CHO BN 2 CAU TRC LAM NAY

NHO K CHO MINH NHA

24 tháng 1 2017

CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)

SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)

XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:

AB = AC ( CM Ở CÂU a)

GÓC DAB = GÓC EAC ( CMT)

=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)

=> BH = CK( 2 CẠNH TƯƠNG ỨNG)

d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU

2

1 tháng 1 2019

A B C E F D M N

a) Xét \(\bigtriangleup BCE \) và \(\bigtriangleup CBD\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECB}=\widehat{CBD}\)(2 góc sole trong do BD//CE)

\(BC-chung\)

\(\implies \bigtriangleup BCE=\bigtriangleup CBD(c.g.c)\)

b) Có: \(\bigtriangleup BCE=\bigtriangleup CBD(cmt)\)

\(\implies EB=CD\)(1)

Có: AB=CD(gt)

\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=CF\)(2)

Từ (1) và (2) \(\implies CD=CF\)

Có: AB=CD(gt)

\(\implies \bigtriangleup ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc ở đáy)

Xét \(\bigtriangleup ECB\) và \(\bigtriangleup FBC\)  có:

\(EB=FC(cmt)\)

\(\widehat{EBC}=\widehat{FCB}\left(cmt\right)\)

\(BC-chung\)

\(\implies \bigtriangleup ECB=\bigtriangleup FBC(c.g.c)\)

\(\implies BF=CE\)(2 cạnh tương ứng)

c) Có: \(\bigtriangleup BCE= \bigtriangleup CBD\)

\(\Rightarrow\widehat{EBC}=\widehat{DCB}\)

Gọi FD giao BC tại N

Xét \(\Delta FCN\) và \(\Delta DCN\) có;

\(CF=CD\)(câu b)

\(\widehat{FCN}=\widehat{DCN}\left(cmt\right)\)

\(CN-chung\)

\(\Rightarrow\Delta FCN=\Delta DCN\left(c.g.c\right)\)

\(\Rightarrow\widehat{CNF}=\widehat{CND}\)(2 góc tương ứng)

Mà \(\widehat{CNF}+\widehat{CND}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{CNF}=\widehat{CND}=90^o\Rightarrow FD\perp BC\)

d) Xét \(\Delta EMC\) và \(\Delta DMB\) có:

\(EC=BD\left(gt\right)\)

\(\widehat{ECM}=\widehat{MBD}\)

\(MB=MC\)(vì M-trung điểm BC)

\(\Rightarrow\Delta EMC=\Delta DMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{EMC}=\widehat{DMB}\)(2 góc tương ứng)

Mà \(\widehat{BME}+\widehat{EMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{BME}+\widehat{DMB}=180^o\)

\(\Rightarrow EM\equiv MD\)

\(\implies E;M;D\) thẳng hàng

_Học tốt_

31 tháng 12 2018

d) Ta có EC // BD và EC = BD ( tam giác BCE = tam giác CBD )

=> tứ giác BECD là hình bình hành

=> ED giao BC tại trung điểm mỗi đường

Mà M là trung điểm của BC nên M là trung điểm của ED

=> M, E, D thẳng hàng ( đpcm )