K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Tự vẽ hình nha!

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

29 tháng 4 2019

a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)

BM = CM do AM là trung tuyến (gt)

góc CMA = góc BMD (đối đỉnh)

=> tam giác CMA = tam giác BMD (c - g - c)

=> BD = AC (đn)

1: Xet ΔMDB vuông tại D và ΔNEC vuông tại E có

BD=CE
góc MBD=góc NCE

=.ΔMDB=ΔNEC

=>DM=EN

2: Xét tứ giác MDNE có

MD//NE

MD=NE

=>MDNE là hình bình hành

=>MN cắt DE tại trung điểm của mỗi đường và ME//ND

 

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
28 tháng 4 2019

rễ vãi nhưng tao đéo trả lời hihi

28 tháng 4 2019

em bị hack nick vừa đổi mk

17 tháng 7 2017

a)Ta có:\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

  Mà \(\widehat{ACB}=\widehat{NCE}\)(2 góc đối đỉnh)

=>\(\widehat{ABC}=\widehat{NCE}\)

Xét tam giác MDB và tam giác NEC có:

\(\widehat{MDB}=\widehat{NEC}\)(= 90 độ)

BD=EC

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

=>tam giác MDB = tam giác NEC(g-c-g)

=>DM=EN

b)Ta có:\(\widehat{DMI}+\widehat{DIM}=90độ\)(tam giác DIM vuông tại D)

           \(\widehat{ENI}+\widehat{NIE}=90độ\)(tam giác INE cân tại E)

\(\widehat{DIM}=\widehat{NIE}\)(2 góc đối đỉnh)=>\(\widehat{DMI}=\widehat{ENI}\)

Xét tam giác DMI và tam giác ENI có:

\(\widehat{IDM}=\widehat{CEN}\)(=90 độ)

DM=EN (theo phần a)

\(\widehat{DMI}=\widehat{ENI}\)(cmt)

=>tam giác DMI= tam giác ENI(g-c-g)

=>MI=IN

Vậy đường thẳng BC cát MN tại trung điểm I của MN

9 tháng 1 2020

hình đây