K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

rễ vãi nhưng tao đéo trả lời hihi

28 tháng 4 2019

em bị hack nick vừa đổi mk

29 tháng 4 2019

Tự vẽ hình nha!

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

29 tháng 4 2019

a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)

BM = CM do AM là trung tuyến (gt)

góc CMA = góc BMD (đối đỉnh)

=> tam giác CMA = tam giác BMD (c - g - c)

=> BD = AC (đn)

15 tháng 6 2016

Hình tự túc, vẽ khó quá.

a) ACB^ = ECN^ (đđ)

Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)

=> ABC^ = ECN^ 

Xét \(\Delta\)BDM và \(\Delta\)CEN :

BDM^ = CEN^ = 90o

BD = CE

ABC^ = CEN^ 

=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)

=> DM = EN (2 cạnh tương ứng)

b) MD _|_ BC; NE_|_ BC =>   MD // NE 

                                         => DMI^ = ENI^ (sole trong) 

Xét \(\Delta\)DMI và \(\Delta\)ENI:

MDI^ = NEI^ = 90o

MD = EN (cmt)

DMI^ = ENI (cmt)

=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)

=> IM = IN                                              (1)

Vì I là giao điểm của MN và BC nên I nằm trên MN                          (2)

Từ (1) và (2) => I là trung điểm của MN

c) Xét \(\Delta\)ABO và \(\Delta\)ACO:

AO chung

BAO^ = CAO^ 

AB = AC 

=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)

d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)

  

 

16 tháng 6 2016

Sorry! Bí lun rồi bn ơi, càng nghĩ càng loạn.oho

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh