K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Ta có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\). Áp dụng tính chất dãy tỉ số bằng nhau
=>\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
=>\(\frac{x}{y}=2=>x=2y\)

11 tháng 7 2018

Có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\left(x\ne y\ne z;x,y,z>0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)

\(\Rightarrow\frac{x}{y}=2\Rightarrow x=2y\left(đpcm\right)\)

20 tháng 7 2016

cứu với!!!!!!!!!!!!!!!!!! Mai đi học rồi đó!!