K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Áp dung tính chất của DTSBN,ta có :

\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{x+y}{x+y-z}\)(1)

=>\(\frac{x+y}{z}=\frac{x+y}{x+y-z}\)=>z=x+y-z =>2z = x + y

Thay vào (1) =>\(\frac{2z}{z}=\frac{x}{y}\)=> \(2=\frac{x}{y}\)=>y=2x (ĐPCM)

20 tháng 7 2016

cứu với!!!!!!!!!!!!!!!!!! Mai đi học rồi đó!!

2 tháng 7 2019

Cho mk lời giải đầy đủ đi

29 tháng 5 2020

gấp vãi !!!!!!!!!

19 tháng 3 2017

M=(1-z/x)(1-x/y)(1+y/z)

M=[(x-z)/x].[(y-x)/y].[(y+z)/z]

M=y/x . -z/y. x/z(thay x-z=y;y-x=-z;y+z=x)

M=-1

11 tháng 12 2023

Ta có: \(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\left(x,y,z\ne0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}\)

\(=\dfrac{x+2y-z+y+2z-x+z+2x-y}{z+x+y}\)

\(=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\dfrac{x+2y-z}{z}=\dfrac{y+2z-x}{x}=\dfrac{z+2x-y}{y}=2\)

\(\Rightarrow\dfrac{x+2y}{z}-1=\dfrac{y+2z}{x}-1=\dfrac{z+2x}{y}-1=2\)

\(\Rightarrow\dfrac{x+2y}{z}=\dfrac{y+2z}{x}=\dfrac{z+2x}{y}=3\)

\(\Rightarrow\dfrac{x+2y}{z}\cdot\dfrac{y+2z}{x}\cdot\dfrac{z+2x}{y}=3\cdot3\cdot3\)

\(\Rightarrow\dfrac{x+2y}{y}\cdot\dfrac{y+2z}{z}\cdot\dfrac{z+2x}{x}=27\)

\(\Rightarrow\left(\dfrac{x}{y}+2\right)\left(\dfrac{y}{z}+2\right)\left(\dfrac{z}{x}+2\right)=27\)

hay \(P=27\)

Vậy: ...

13 tháng 12 2023

Thanks (´▽`ʃ♡ƪ)