K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

đặt B=1/1.2+1/2.3+...+1/49.50

ta có:

A=1/1^2+1/2^2+1/3^2+1/4^2+....+1/50^2<B=1/1.2+1/2.3+...+1/49.50 (1)

B=1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1 (2)

từ (1) va (2)=>A<B<2

=>A<2

18 tháng 2 2017

bạn giải đi

20 tháng 2 2017

Phần a, A> 1/3.4+1/4.5+1/5.6+...+ 1/50.51 = 1/3-1/4+1/4-1/5+1/5-1/6+...+ 1/50-1/51 = 1/3-1/51 = 48/153  > 48/192 =1/4. ĐPCM

Phần b, A< 1/3^2+1/3.4+1/4.5+...+1/49.50 = 1/9+1/3-1/4+1/4-1/5+...+ 1/49-1/50 = 1/9+1/3-1/50 = 1/9+47/150 < 1/9+50/150 = 1/9+1/3 = 4/9. ĐPCM

25 tháng 8 2016

Ta có

\(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(\Rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{50}-\frac{1}{51}\)

\(\Rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)

\(\Rightarrow A>\frac{1}{4}+\frac{42}{9.51}>\frac{1}{4}\)

Vậy A>1/4

b)

Ta có

\(A< \frac{1}{3}^2+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\)

\(\Rightarrow A< \frac{1}{9}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{50}\)

\(\Rightarrow A< \frac{4}{9}-\frac{1}{50}< \frac{4}{9}\)

Vậy A<4/9

25 tháng 8 2016

thank nha ha

20 tháng 3 2016

nhanh giúp mình

6 tháng 4 2016

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=1+B\)( Gọi biểu thức trong ngoặc là B)

Ta xét B

B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

B<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

B<\(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{49}-\frac{1}{50}\)

B<\(1-\frac{1}{50}<1\)

Vậy B<1

=>A=1+B < 1+1=2

Vậy A<2