K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

\(\text{bđt }\Leftrightarrow4\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(4a^2b^2+4a^2+4b^2+4\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\text{ (1)}\)

Theo nguyên lý Dirichlet, trong 3 số \(a^2;b^2;c^2\), luôn tồn tại 2 số cùng \(\ge\frac{1}{2}\)hoặc cùng \(\le\frac{1}{2}\), giả sử là a và b

\(\Rightarrow\left(2a^2-1\right)\left(2b^2-1\right)\ge0\)

\(\Leftrightarrow4a^2b^2\ge2\left(a^2+b^2\right)-1\)

\(\Rightarrow VT\text{ (1) }\ge\left[6\left(a^2+b^2\right)+3\right]\left(c^2+1\right)=3\left[2\left(a^2+b^2\right)+1\right]\left(c^2+1\right)\)

\(\ge3\left[\left(a+b\right)^2+1^2\right]\left[1^2+c^2\right]\ge3\left[\left(a+b\right).1+1.c\right]^2=3\left(a+b+c\right)^2\)

(Theo bđt Bunhiacopxki)

Vậy ta có đpcm.

23 tháng 10 2016

cho tam giác ABC vuong tại A có AB<AC và đường cao AH. gọi M,N,P lần lượt là trung điểm của các cạnh BC, CA, AB , biết AH=4,AM=5.cmr các điểm A,H,M,N,P thuộc cùng một đường tròn

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

5 tháng 11 2018

SAI ĐỀ vì nếu thử \(a=-1;b=-2;c=3\)

thì thỏa mãn đề bài nhưng \(a^2+b^2+c^2=\left(-1\right)^2+\left(-2\right)^2+3^2=14⋮̸3\)

7 tháng 11 2018

mũ 3 nha mọi người. giúp tớ với ạ

20 tháng 7 2017

thỏa cái j sửa đi

23 tháng 12 2015

ra nguyên những bài khó hiểu hết là chết liền

23 tháng 12 2015

hoc lop may vay bai kho qua ai ma giai duoc