K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2019

\(a\ne0\)

\(\left\{{}\begin{matrix}-\frac{b}{2a}=\frac{1}{3}\\\frac{4ac-b^2}{4a}=-\frac{4}{3}\\a-b+c=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=-\frac{2}{3}a\\4ac-b^2=-\frac{16}{3}a\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\\c=-1\end{matrix}\right.\)

5 tháng 6 2017

a)

9 tháng 10 2019

undefined

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

Xác định phương trình hàm số bậc hai Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 ) b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 ) c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 ) d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 ) e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 ) f , Đi qua A ( 1, 1 )...
Đọc tiếp

Xác định phương trình hàm số bậc hai

Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết

a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 )

b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 )

c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 )

d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 )

e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 )

f , Đi qua A ( 1, 1 ) B ( -1 ,9 ) c ( 0 , 3 )

g , Có đỉnh I ( 1 , 5 ) và đi qua A ( -1 , 1 )

h , có giá trị của trục bằng -1 và đi qua A ( 2 , -1) B ( 0 , 3 )

i , Đi qua A ( -1 , 8 0 , B ( 2 , -1 ) , C ( 1 , 0 )

j , Có đỉnh I ( 2 , 1 ) và cắt oy tại điểm có tung độ bằng 7

k ,Có giá trị lớn nhất bằng 2 và đi qua A ( 1 , 1 ) N ( -1 , 1 0

e, có giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi x = \(\frac{1}{2}\)và nhận giá trị bằng 1 khi x = 1

m , Có đỉnh I ( 3 , 4 ) và đi qua M ( -1 ,0)

n , Có trục đối xứng x =1 và đi qua M ( 0 , 2 ) N ( 3 , 4 )

o , Có đỉnh \(\in\) ox , trục đói xứng x =2 đi qua N ( 0 , 2 )

p , Đi qua M ( 2 , -3 ) có đỉnh I ( 1 , -4 )

0
NV
24 tháng 10 2020

Chắc phải có điều kiện \(a\ne0\)

\(\left\{{}\begin{matrix}\frac{4a.\left(-1\right)-b^2}{4a}=\frac{3}{4}\\64a+8b-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4a-b^2=3a\\64a+8b=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2=-7a\\a=-\frac{1}{8}b\end{matrix}\right.\) \(\Rightarrow b^2=\frac{7}{8}b\Rightarrow b=\frac{7}{8}\Rightarrow a=-\frac{7}{64}\)

Vậy hàm số có pt: \(y=-\frac{7}{64}x^2+\frac{7}{8}x-1\)

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá