K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)

\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)

28 tháng 7 2016

b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)

=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)

=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)

=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)

=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)

=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)

27 tháng 12 2016

Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:

vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.

\(x+y+z=1\left(1\right)\)

\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)

Lấy (1) nhân (2)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)

\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)

\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)

Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại 

(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)

27 tháng 12 2016

Hay ! mình thì nhân hết ra mệt thật

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

5 tháng 5 2017

Cm P=1 thì Q=0

5 tháng 5 2017

Ta có:

\(\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)

\(\Leftrightarrow x+y+z=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)

\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)

Vậy ta có DPCM

5 tháng 1 2018

Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)

\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)

\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)

Vậy P = 0

5 tháng 1 2018

Đề  sai rồi nếu là vầy thì mình làm dc    x+y+z=1 và x/(y+z)+y/(z+x)+z/(x+y)=1.Tính x^2/(y+z)+y^2/(x+z)+z^2/(x+y)+?