Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)
\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)
b)\(x\left(y^2-z^2\right)+z\left(x^2-y^2\right)+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-\left(y^2-z^2+z^2-x^2\right)z+y\left(z^2-x^2\right)\)
=\(x\left(y^2-z^2\right)-z\left(y^2-z^2\right)-z\left(z^2-x^2\right)+y\left(z^2-x^2\right)\)
=\(\left(y^2-z^2\right)\left(x-z\right)+\left(z^2-x^2\right)\left(y-z\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(-\left(y+z\right)+z+x\right)\)
=\(\left(y-z\right)\left(z-x\right)\left(x-y\right)\)
Lần sau bạn nhớ gửi đường dẫn câu hỏi nhé:
vào tìm câu hỏi qua Thông kế--> câu hỏi khác--> mỏi và ngại lắm.
\(x+y+z=1\left(1\right)\)
\(\frac{x}{z+z}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}=1\left(2\right)\)
Lấy (1) nhân (2)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{z+y}+\frac{y}{\left(z+x\right)}+\frac{z}{\left(x+y\right)}\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y\right)\frac{z}{\left(x+y\right)}+\left(y+z\right).\frac{x}{\left(z+y\right)}+\left(x+z\right).\frac{y}{\left(z+x\right)}=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+\left(x+y+z\right)=1\)
\(\Leftrightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)+1=1\)
\(\Rightarrow\left(\frac{x^2}{z+y}+\frac{y^2}{\left(z+x\right)}+\frac{z^2}{\left(x+y\right)}\right)=0\)
Chưa thạo bước 2 nhân phân phối bt hết ra rồi ghép lại
(mình hay lang thang xem lời giải => thấy cách nhân ghép luôn đỡ mỏi)
a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Biến đổi vế trái ta được :
\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)
\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)
\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)
Ta có:
\(\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow x+y+z=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)
Vậy ta có DPCM
Ta có : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) \(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Rightarrow\frac{x^2}{y+z}+\frac{xy+xz}{y+z}+\frac{y^2}{z+x}+\frac{xy+yz}{z+x}+\frac{z^2}{x+y}+\frac{zx+zy}{x+y}\)\(=x+y+z\)
\(\Rightarrow P+\frac{x\left(y+z\right)}{y+z}+\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}=x+y+z\)
\(\Rightarrow P+x+y+z=x+y+z\Rightarrow P=0\)
Vậy P = 0